
 

 Vedran Novoselac and Zlatko Pavić 

8th International Scientific and Expert Conference TEAM 2016 

Technique, Education, Agriculture & Management 

Trnava, October 19-21, 2016 

 

OPTIMAL NUBER OF CLUSTERS PROVIDED BY  

k -MEANS AND E-M ALGORITHM 
Vedran Novoselac* and Zlatko Pavić 

Mechanical Engineering Faculty in Slavonski Brod, J. J. Strossmayer University of Osijek, Croatia 
*Corresponding author e-mail: vnovosel@sfsb.hr 

 

Abstract 

The paper considers the problem of determining the 
optimal number of clusters in data set by grouping 
index. The problem of clustering are provided with 

k -means and E-M (Expectation Maximization) 

algorithm. In addition to well-known indexes that are 
frequently used, two new indexes are presented. 
New indexes are based on the orthogonal distances 
from data to the line which represent corresponding 
cluster in the partition obtained with mentioned 
algorithms.  
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1. Introduction 

The paper considers the problem of partitioned a set 

of data 
nn

i mia   },1,=:{=   into k  

nonempty disjoint subsets 
k ,,1  , mk 1 , 

such that =
1=

i

k

i

 . The partition will be denoted 

by },,{=)( 1 k  . The elements of partition 

  are called clusters and the set of all such 

partitions are denoted by ),( k . For this 

purpose k -means and E-M algorithms are 

described [1, 2, 3, 6, 8]. Calculation of the various 
indexes on final partition indicates the quality of 
separateness and compactness of clusters. Some 
of the most popular indexes that are frequently used 
are Davies-Bouldin, Dunn, Calinski-Haradsz, and 
Simplify Silhouette Width Criterion [2, 6, 7, 9]. In 
addition to these indexes two new indexes 
Orthogonal Distances Criterion (ODC) and Width 
Ortogonal Distances Criterion (WODC) are 
presented. Indexes ODC and WODC are based on 
line which is determined by eigenvector of 
corresponding largest eigenvalue of covariance 
matrix and mean of observed cluster. The optimal 

number of clusters of data set   are provided with 

observation on mentioned indexes.   

2. Grouping algorithms  

This section presents the standard k -means and  

E-M algorithm. Mentioned algorithms have very 
broad application and they are often closely 
modified to the related issue [4,5]. 

 

2.1. k -means algorithm  

Let 
p

yxyxd =),( , 1p , be a metric (in 

paper we use Euclidian norm, i.e. 2=p ). In the 

sense of the given metric center 
ic  of 

corresponding cluster 
i  is defined as 

).,(minarg= cadc

i
anc

i 
 

 
(1) 

Data a  is attached to cluster 
i  if is closest to 

the center 
ic  in comparison with the distances from 

the centers of other clusters. In that sense objective 

function ),(: kF   is defined as 

).,(),,(=)(
1=

kcadF i

i
a

k

i

 


 (2) 

Thus defined stopping criterion of k -means 

algorithm due to the so-called threshold 0> . 

Stoppage criterion is reached if absolute value of 
the difference between the objective function of 
iteration step does not exceed defined threshold . 

Thus, the k -means algorithm can be written as 

follows: 

ALGORITHM 1. ( k -means) 

 
STEP 0. 

Input number of clusters k , data set  , stoppage 

criterion 0> , and initial centers 
00

1 ,, kcc  . Set 

step of the algorithm 0=s ; 

STEP 1. 
Apply the principle of minimum distance to 

determine the initial partition },,{= 1

s

k

ss   , 

with an initial clusters  

},,1,=),,(),(:{= kjcadcada s

j

s

i

s

i   

for every ;,1,= ki   
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STEP 2. 

Form a new centroids 
1s

ic , ki ,1,=  , which are 

obtained by solving minimization problems 

);,(minarg=1 cadc
s
i

a
nc

s
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Create a new partition },,{= 11

1

1  s

k

ss    with 

clusters 

},,1,=),
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kj
s
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s
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for every ;,1,= ki   

 
STEP 3. 

If (| F  () Fs  |)1s
 then STOP, else 

1= ss  and go to STEP 2.  

2.2. E-M algorithm  

E-M algorithm is based on the principle of soft 
grouping, where the boundaries between clusters 
are not solid. Specifically, it is a probabilistic 
grouping that each element of the reference data 
set determines the probability of belonging to each 
cluster. E-M algorithm is generally based on the 
Gaussian mixture model. Gaussian mixture model 
approximates the data as a linear combination of 𝑘 
density 

),|(=)(

1=

iii

k

i

xfwxp   (3) 

where 𝑥 is 𝑛-dimensional vector, and weights 𝑤𝑖, 
𝑖 = 1,2, … , 𝑘 respectively represent the 
percentage of data belonging to a cluster 𝜋𝑖, 𝑖 =

1,2, … , 𝑘, what imply  ∑ 𝑤𝑖 = 1𝑘
𝑖=1 . Parameter 𝜃𝑖 =

(𝜇𝑖 , 𝛴𝑖) of density function 𝑓𝑖(𝑥|𝜃𝑖) in Gaussian 
mixture model is presented with expectation 𝜇𝑖  
and covariance matrix 𝛴𝑖 determining the density 
function for the normal (Gaussian) distribution, i.e.  
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Quality of Gaussian mixture model presented with 

parameters },1,=:),,{(= kiw iii    is 

measured with log-likelihood 
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The process is repeated until the log-likelihood of 
the mixture model at the previous iteration is 

sufficiently close to the log-likelihood of the current 
model. The algorithm proceeds as follows for 
Gaussian mixture model: 
 
ALGORITHM 2. (E-M) 
 
STEP 0. 
 Initialization of parameters

},1,=:),,{(= 0000 kiw iii    (zero partition),𝑠 = 0, 

and stopage criterion 𝜀 > 0 (set by user or at 
random). 
 
STEP 1. (E step) 

For every a  calculate 𝜋𝑖 cluster probability as 
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STEP 2. (M step) 
Calculation of new parameters for Gaussian mixture 
model for every 𝑖 = 1,2, … , 𝑘: 
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STEP 3. 

If   |)()(| 1ss LL  then STOP, else 𝑠 = 𝑠 + 1 

and go to STEP 1. 
 

3. Grouping indexes 

In order to measure the compactness and 

separateness of k  optimal partitions one of the 

most common indexes are used: DB (Davies-
Bouldin), D (Dunn), CH (Calinski-Harabasz), SSC ( 
Simplify Silhouette Width Criterion). In addition to 
these , we construct two new indexes ODC 
(Orthogonal Distances Criterion) and WODC (Width 
Orthogonal Distances Criterion). They are based on 
the sum of the orthogonal distance to the line which 
is passing through the centroid and is determined 
by the eigenvector of the largest eigenvalue of 
covariance matrix of observed cluster. Next figure 
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present such a lines of the case when set   are 

contained of the two clusters.  

 

Figure 1. Index construction  

Below we present a detailed definition of the 
aforementioned indexes: 

 

a) Davies-Bouldin indeks 
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More compact and better separated clusters will 
result smaller DB index. 

 
b) Dunn indeks 
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where  
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More compact and better separated clusters will 
result smaller D index. 

 

c) Chalinski-Harabasz indeks 
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where ),(:, k  are functions defined 

as: 
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More compact and better separated clusters will 
result larger DB index. 

d) Simplify Silhouette Width Criterion 
 

,
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1
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(9) 

where for all  ia   follows that

).,(min=),,(= j
ij

aiiai cadcad


  

e) Orthogonal Distances Criterion 
 

,=
1=

i

k

i

DODC   (10) 

where  

).,(= i

i
a

i paD 


  

),( ipa  present orthogonal distance from a  to the 

line 
ip  which is determined by centroid 

ic  and 

eigenvector of corresponding largest eigenvalue. 

More compact and better separated clusters will 

result smaller ODC index. 

f) Width Orthogonal Distances Criterion 
 

,=
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i
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where 
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1

=
,1,=

ji

ij

kj
ii

i
ai

i ccddpa
d

W










More 

compact and better separated clusters will result 
smaller WODC index. 
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4. Experimental results1   

In this chapter we examine data sets 
2  on 

implementing problem of determining k  optimal 

partition obtained by k -means and E-M algorithm. 

The problem of finding an optimal partition of the set 

  can be reduced to the global optimization 

problem of objective function of k -means and E-M. 

In our case we run observed grouping algorithms for 
many different initial parameters and choose the 
solution with the best quality. The experimental data 
were generated using Gaussian random variable, 

i.e. X ~ ),(  . The figure below shows 

illustrative examples of such functions density. In 
Figure 2(a) is present case with expectation 𝜇 =
(0,0), and identity covariance matrix 𝛴 = 𝐼. Figure 
2(b) present case with 𝜇 = (0,0) and covariance 

matrix 𝛴 = [
1.1 0.3
0.3 1.9

]. 

 

(a) 
 

(b) 

 

 

Figure2 . PDF of Gaussian distribution 

 

In the paper we also generated data with the 
extended model of the Gaussian distribution defined 
as 

X ~ ),;)(1(  BA    (12) 

where 
nBA ,  and   is uniformly distributed 

random   variable   within     the     interval    [0,1],         

i.e.  ~ ([0,1]) . Such data are distributed in a 

way that the expectation of the Gaussian 

distribution is uniformly distributed along the AB . 
The density function of such defined random 
variable is given as 

.d),)(1|(
1

0
=),,|(   BAxfBAxf  (13) 

The Figure 3 below shows illustrative examples of 

such extended Gaussian PDF, where )0,0(A , 

)5,5(B , and identity covariance matrix I

are taken into the calculation of (13). 

 

Figure 3. PDF of extended Gaussian distribution 

The following examples illustrate the calculation of 

optimal number of clusters of data set 
N

i
i

1

  ,  

where every set    is generated with Gaussian 

random variable or extended Gaussian random 

variable defined by (12). To determinate  the k  

optimal partition  we  have  apply 100  randomly   

initializations of k -means and E-M algorithm 

respectively. Among the all randomly generated 
algorithms we presente those one with the best 
solution, i.e. best observed indexs value. 
 

Example 1. 2  The set of data   is generated by 

the Gaussian random variable which is presented in 
Figure 4. The Figure 5 shows the movement of the 

indexes of the k  optimal partition. 

 

Figure 4. Data set   
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Figure 5. Indexes results 

Example 2 The set of data    is generated by the 

extended  Gaussian random variable which is  
presented in Figure 6. The Figure 7 shows the 

movement of the indexes of the k  optimal partition. 

 

Figure 6. Data set   

 

  

  

  

Figure 7. Indexes results 

 

Example 3. 3  The next set of data are generated 
by combination of Gaussian random variable and  
extended  Gaussian random variable which is 
presented in Figure 6. The Figure 7 shows the 

movement of the indexes of the k  optimal partition.  

 

Figure 8. Data set   

 

 

  

  

  

Figure 9. Indexes results 

 

 

5. Conclusion 

Problem of determination of the optimal numbers of 
clusters in  observed data present a problem which 
we have solved by the investigation of the gruping 
indexes. Among the common used indexes we have 
construct two new indexes which shows good 
properties of finding the optimal number of clusters. 
Experimental results shows  that the mentioned 
problem depends on many facts and indexes do not 
clearly shows unique optimal number. This shows 
that the problem must be precisely studied in order 
to finde optimal number of cluster what is present in 
the papper. 
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