Pregled bibliografske jedinice broj: 852186
Effects of dataset characteristics on the performance of feature selection techniques
Effects of dataset characteristics on the performance of feature selection techniques // Applied soft computing, 52 (2017), 109-119 doi:10.1016/j.asoc.2016.12.023 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 852186 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Effects of dataset characteristics on the performance of feature selection techniques
Autori
Oreški, Dijana ; Oreški, Stjepan ; Kliček, Božidar
Izvornik
Applied soft computing (1568-4946) 52
(2017);
109-119
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
dataset characteristics ; feature selection ; comparative analysis ; data sparsity ; feature noise
Sažetak
While extensive research in data mining has been devoted to developing better feature selection techniques, none of this research has examined the intrinsic relationship between dataset characteristics and a feature selection technique’s performance. Thus, our research examines experimentally how dataset characteristics affect both the accuracy and the time complexity of feature selection. To evaluate the performance of various feature selection techniques on datasets of different characteristics, extensive experiments with five feature selection techniques, three types of classification algorithms, seven types of dataset characterization methods and all possible combinations of dataset characteristics are conducted on 128 publicly available datasets. We apply the decision tree method to evaluate the interdependencies between dataset characteristics and performance. The results of the study reveal the intrinsic relationship between dataset characteristics and feature selection techniques’ performance. Additionally, our study contributes to research in data mining by providing a roadmap for future research on feature selection and a significantly wider framework for comparative analysis.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus