Pregled bibliografske jedinice broj: 852068
Corpus vs. lexicon supervision in morphosyntactic tagging: the case of Slovene
Corpus vs. lexicon supervision in morphosyntactic tagging: the case of Slovene // Proceedings of the Tenth International conference on language resources and evaluation (LREC 2016) / Calzolari, N. (ur.).
Portorož: European Language Resources Association (ELRA), 2016. str. 1527-1531 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 852068 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Corpus vs. lexicon supervision in morphosyntactic
tagging: the case of Slovene
Autori
Ljubešić, Nikola ; Erjavec, Tomaž
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the Tenth International conference on language resources and evaluation (LREC 2016)
/ Calzolari, N. - Portorož : European Language Resources Association (ELRA), 2016, 1527-1531
ISBN
978-2-9517408-9-1
Skup
Tenth International conference on language resources and evaluation - LREC 2016
Mjesto i datum
Portorož, Slovenija, 23.05.2016. - 28.05.2016
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Part-of-Speech tagging ; evaluation ; Slavic languages
Sažetak
In this paper we present a tagger developed for inflectionally rich languages for which both a training corpus and a lexicon are available. We do not constrain the tagger by the lexicon entries, allowing both for lexicon incompleteness and noisiness. By using the lexicon indirectly through features we allow for known and unknown words to be tagged in the same manner. We test our tagger on Slovene data, obtaining a 25% error reduction of the best previous results both on known and unknown words. Given that Slovene is, in comparison to some other Slavic languages, a well-resourced language, we perform experiments on the impact of token (corpus) vs. type (lexicon) supervision, obtaining useful insights in how to balance the effort of extending resources to yield better tagging results.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti