Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 844819

Prediction of Chemical Composition from Semi- natural Grassland by NIR Spectroscopy


Marina Vranić, Krešimir Bošnjak, Siniša Glavanović, Marko Vinceković, Dario Jareš, Anamarija Cundić
Prediction of Chemical Composition from Semi- natural Grassland by NIR Spectroscopy // Agriculturae Conspectus Scientifi cus, 81 (2016), 35-41 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 844819 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Prediction of Chemical Composition from Semi- natural Grassland by NIR Spectroscopy

Autori
Marina Vranić, Krešimir Bošnjak, Siniša Glavanović, Marko Vinceković, Dario Jareš, Anamarija Cundić

Izvornik
Agriculturae Conspectus Scientifi cus (1331-7768) 81 (2016); 35-41

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
seminatural grassland; chemical composition; NIR spectroscopy; PLS; MPLS; PCR

Sažetak
Near-infrared (NIR) spectroscopy (1100 – 2500 nm) was used to predict the chemical composition from semi-natural grassland. Modified partial least square (MPLS), principal component regression (PCR) and partial least square (PLS) techniques were used. Standard errors of calibration (SEC) for crude proteins (CP) were 6.52, 4.87 and 6.94 for MPLS, PLS and PCR, while standard errors of cross validation (SECV) were 8.16, 6.13 and 7.56 respectively. SEC for organic matter (OM) were 7.69, 7.61 and 7.37 for MPLS, PLS and PCR, while SECV were 8.08, 8.27 and 7.57 respectively. Higher SEC and SECV were reported for neutral detergent fibre (NDF) and acid detergent fibre (ADF) content than reported for CP and OM content. Hyperspectral analysis by PLS resulted in the highest accuracy for the estimation of crude protein, organic matter and neutral detergent fibre and acid detergent fibre while MPLS was the best in predicting acid detergent fibre. The greates accuracy in this research was achieved for CP, than NDF, OM and finally ADF content. Prediction for NDF, OM and especially ADF content should be improved in the future by involving specific semi-grassland samples.

Izvorni jezik
Engleski

Znanstvena područja
Poljoprivreda (agronomija)



POVEZANOST RADA


Ustanove:
Agronomski fakultet, Zagreb


Citiraj ovu publikaciju:

Marina Vranić, Krešimir Bošnjak, Siniša Glavanović, Marko Vinceković, Dario Jareš, Anamarija Cundić
Prediction of Chemical Composition from Semi- natural Grassland by NIR Spectroscopy // Agriculturae Conspectus Scientifi cus, 81 (2016), 35-41 (međunarodna recenzija, članak, znanstveni)
Marina Vranić, Krešimir Bošnjak, Siniša Glavanović, Marko Vinceković, Dario Jareš, Anamarija Cundić (2016) Prediction of Chemical Composition from Semi- natural Grassland by NIR Spectroscopy. Agriculturae Conspectus Scientifi cus, 81, 35-41.
@article{article, year = {2016}, pages = {35-41}, keywords = {seminatural grassland, chemical composition, NIR spectroscopy, PLS, MPLS, PCR}, journal = {Agriculturae Conspectus Scientifi cus}, volume = {81}, issn = {1331-7768}, title = {Prediction of Chemical Composition from Semi- natural Grassland by NIR Spectroscopy}, keyword = {seminatural grassland, chemical composition, NIR spectroscopy, PLS, MPLS, PCR} }
@article{article, year = {2016}, pages = {35-41}, keywords = {seminatural grassland, chemical composition, NIR spectroscopy, PLS, MPLS, PCR}, journal = {Agriculturae Conspectus Scientifi cus}, volume = {81}, issn = {1331-7768}, title = {Prediction of Chemical Composition from Semi- natural Grassland by NIR Spectroscopy}, keyword = {seminatural grassland, chemical composition, NIR spectroscopy, PLS, MPLS, PCR} }

Časopis indeksira:


  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • CAB Abstracts





Contrast
Increase Font
Decrease Font
Dyslexic Font