Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 843000

Generalizations of Sherman's inequality by Hermite's interpolating polynomial


Adil Khan, Muhammad; Ivelić Bradanović, Slavica; Pečarić Josip
Generalizations of Sherman's inequality by Hermite's interpolating polynomial // Mathematical inequalities & applications, 19 (2016), 4; 1181-1192 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 843000 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Generalizations of Sherman's inequality by Hermite's interpolating polynomial

Autori
Adil Khan, Muhammad ; Ivelić Bradanović, Slavica ; Pečarić Josip

Izvornik
Mathematical inequalities & applications (1331-4343) 19 (2016), 4; 1181-1192

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
majorization; n-convexity; Schur-convexity; Sherman's theorem; Hermite's interpolating polynomial; Chebyshev functional; Grüss type inequalities; Ostrowski type inequalities; exponentially convex functions; log-convex functions; means

Sažetak
Generalizations of Sherman's inequality for convex functions of higher order are obtained by applying Hermite's interpolating polynomials. The results for particular cases, namely, Lagrange, (m, n-m) and two-point Taylor interpolating polynomials are also cosidered. The Grüss and Ostrowski type inequalities related to these generalizations are given.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-5435 - Nejednakosti i primjene (INEQUALITIES) (Pečarić, Josip) ( CroRIS)

Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split,
Tekstilno-tehnološki fakultet, Zagreb

Profili:

Avatar Url Slavica Ivelic (autor)

Avatar Url Josip Pečarić (autor)


Citiraj ovu publikaciju:

Adil Khan, Muhammad; Ivelić Bradanović, Slavica; Pečarić Josip
Generalizations of Sherman's inequality by Hermite's interpolating polynomial // Mathematical inequalities & applications, 19 (2016), 4; 1181-1192 (međunarodna recenzija, članak, znanstveni)
Adil Khan, M., Ivelić Bradanović, S. & Pečarić Josip (2016) Generalizations of Sherman's inequality by Hermite's interpolating polynomial. Mathematical inequalities & applications, 19 (4), 1181-1192.
@article{article, author = {Adil Khan, Muhammad and Iveli\'{c} Bradanovi\'{c}, Slavica}, year = {2016}, pages = {1181-1192}, keywords = {majorization, n-convexity, Schur-convexity, Sherman's theorem, Hermite's interpolating polynomial, Chebyshev functional, Gr\"{u}ss type inequalities, Ostrowski type inequalities, exponentially convex functions, log-convex functions, means}, journal = {Mathematical inequalities and applications}, volume = {19}, number = {4}, issn = {1331-4343}, title = {Generalizations of Sherman's inequality by Hermite's interpolating polynomial}, keyword = {majorization, n-convexity, Schur-convexity, Sherman's theorem, Hermite's interpolating polynomial, Chebyshev functional, Gr\"{u}ss type inequalities, Ostrowski type inequalities, exponentially convex functions, log-convex functions, means} }
@article{article, author = {Adil Khan, Muhammad and Iveli\'{c} Bradanovi\'{c}, Slavica}, year = {2016}, pages = {1181-1192}, keywords = {majorization, n-convexity, Schur-convexity, Sherman's theorem, Hermite's interpolating polynomial, Chebyshev functional, Gr\"{u}ss type inequalities, Ostrowski type inequalities, exponentially convex functions, log-convex functions, means}, journal = {Mathematical inequalities and applications}, volume = {19}, number = {4}, issn = {1331-4343}, title = {Generalizations of Sherman's inequality by Hermite's interpolating polynomial}, keyword = {majorization, n-convexity, Schur-convexity, Sherman's theorem, Hermite's interpolating polynomial, Chebyshev functional, Gr\"{u}ss type inequalities, Ostrowski type inequalities, exponentially convex functions, log-convex functions, means} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet





Contrast
Increase Font
Decrease Font
Dyslexic Font