Pregled bibliografske jedinice broj: 84103
Newton's formula and continued fraction expansion of sqrt(d)
Newton's formula and continued fraction expansion of sqrt(d) // Experimental Mathematics, 10 (2001), 1; 125-131 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 84103 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Newton's formula and continued fraction expansion of sqrt(d)
Autori
Dujella, Andrej
Izvornik
Experimental Mathematics (1058-6458) 10
(2001), 1;
125-131
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
continued fractions; Newton's formula
Sažetak
It is known that if the period s(d) of the continued fraction expansion of sqrt(d)satisfies s(d) <= 2, then all Newton's approximants R_n = 1/2 ((p_n / q_n)+ (dq_n / p_n)) are convergents of sqrt(d), and moreover we have R_n = p_{2n+1} / q_{2n+1} for all n >= 0. Motivated with this fact we define two numbers j = j(d,n) and b=b(d) by R_n = p_{2n+1+2j} / q_{2n+1+2j} if R_n is a convergent of sqrt(d); b = | {n : 0 <= n <= s-1 and R_n is a convergent of sqrt(d)} |. The question is how large the quantities |j| and b can be. We prove that |j| is unbounded and give some examples which support a conjecture that b is unbounded too. We also discuss the magnitude of |j| and b compared with d and s(d).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037009
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Andrej Dujella
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews