Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 833826

On the extension of D(-8k^2)-triple {;;;1, 8k^2, 8k^2+1};;;


Adžaga, Nikola
On the extension of D(-8k^2)-triple {;;;1, 8k^2, 8k^2+1};;; // Conference on Elementary and analytic number theory (ELAZ 2016) / Elsholtz, Christian ; Nowak, Georg ; Tichy, Robert (ur.).
Strobl, Austrija, 2016. str. 9-9 (predavanje, nije recenziran, sažetak, znanstveni)


CROSBI ID: 833826 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On the extension of D(-8k^2)-triple {;;;1, 8k^2, 8k^2+1};;;

Autori
Adžaga, Nikola

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Conference on Elementary and analytic number theory (ELAZ 2016) / Elsholtz, Christian ; Nowak, Georg ; Tichy, Robert - , 2016, 9-9

Skup
Elementare und Analytische Zahlentheorie, Conference on elementary and analytic number theory (ELAZ 2016)

Mjesto i datum
Strobl, Austrija, 05.09.2016. - 09.09.2016

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
Diophantine m-tuples ; D(n)-m-tuples

Sažetak
By elementary means, we show that the D(-8k^2)-triple {; ; ; 1, 8k^2, 8k^2+1}; ; ; can be extended to at most a quadruple (the fourth element can be only 32k^2+1). A set of m positive integers {; ; ; a_1, a_2, ..., a_m}; ; ; is called D(n)-m-tuple if a_i a_j+n is a perfect square for all 1 <= i < j <= m. Extending the initial triple with d and then eliminating d leads to a system consisting of a Pell (z^2-(16k^2+2)y^2=1) and a pellian equation (x^2-2y^2=-8k^2+1). By solving Pell equation, we get two recurrent sequences y_n and z_n. Due to the second equation, the problem reduces to examining when can an element of the new sequence X_n = 2y_n^2-8k^2+1 be a complete square. Using the relations between y_n and z_n, e.g. y_{; ; ; 2n+1}; ; ; = 2y_nz_n, we write X_n as a product of two factors, one of which is obviously not a square. We finish the proof by showing that these factors are relatively prime via principle of descent.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Građevinski fakultet, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Nikola Adžaga (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada www.math.tugraz.at

Citiraj ovu publikaciju:

Adžaga, Nikola
On the extension of D(-8k^2)-triple {;;;1, 8k^2, 8k^2+1};;; // Conference on Elementary and analytic number theory (ELAZ 2016) / Elsholtz, Christian ; Nowak, Georg ; Tichy, Robert (ur.).
Strobl, Austrija, 2016. str. 9-9 (predavanje, nije recenziran, sažetak, znanstveni)
Adžaga, N. (2016) On the extension of D(-8k^2)-triple {;;;1, 8k^2, 8k^2+1};;;. U: Elsholtz, C., Nowak, G. & Tichy, R. (ur.)Conference on Elementary and analytic number theory (ELAZ 2016).
@article{article, author = {Ad\v{z}aga, Nikola}, year = {2016}, pages = {9-9}, keywords = {Diophantine m-tuples, D(n)-m-tuples}, title = {On the extension of D(-8k\^{}2)-triple {;;;1, 8k\^{}2, 8k\^{}2+1};;;}, keyword = {Diophantine m-tuples, D(n)-m-tuples}, publisherplace = {Strobl, Austrija} }
@article{article, author = {Ad\v{z}aga, Nikola}, year = {2016}, pages = {9-9}, keywords = {Diophantine m-tuples, D(n)-m-tuples}, title = {On the extension of D(-8k\^{}2)-triple {;;;1, 8k\^{}2, 8k\^{}2+1};;;}, keyword = {Diophantine m-tuples, D(n)-m-tuples}, publisherplace = {Strobl, Austrija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font