Pregled bibliografske jedinice broj: 832982
More on Diophantine sextuples
More on Diophantine sextuples // Number Theory - Diophantine problems, uniform distribution and applications, Festschrift in honour of Robert F. Tichy's 60th birthday / Elsholtz, C. ; Grabner, P. (ur.).
Berlin: Springer, 2017. str. 227-235 doi:10.1007/978-3-319-55357-3_11
CROSBI ID: 832982 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
More on Diophantine sextuples
Autori
Dujella, Andrej ; Kazalicki, Matija
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Number Theory - Diophantine problems, uniform distribution and applications, Festschrift in honour of Robert F. Tichy's 60th birthday
Urednik/ci
Elsholtz, C. ; Grabner, P.
Izdavač
Springer
Grad
Berlin
Godina
2017
Raspon stranica
227-235
ISBN
978-3-319-55356-6
Ključne riječi
Diophantine sextuples ; elliptic curves
Sažetak
A rational Diophantine m-tuple is a set of m nonzero rationals such that the product of any two of them increased by 1 is a perfect square. The first rational Diophantine quadruple was found by Diophantus, while Euler proved that there are infinitely many rational Diophantine quintuples. In 1999, Gibbs found the first example of a rational Diophantine sextuple, and Dujella, Kazalicki, Mikić and Szikszai recently proved that there exist infinitely many rational Diophantine sextuples. In this paper, generalizing the work of Piezas, we describe a method for generating new parametric formulas for rational Diophantine sextuples.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
ZCI QuantiXLie
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus