Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 832202

Distributed processing of big mobility data as spatio-temporal data streams


Galić, Zdravko; Mešković, Emir; Osmanović, Dario
Distributed processing of big mobility data as spatio-temporal data streams // Geoinformatica, 21 (2017), 2; 263-291 doi:10.1007/s10707-016-0264-z (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 832202 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Distributed processing of big mobility data as spatio-temporal data streams

Autori
Galić, Zdravko ; Mešković, Emir ; Osmanović, Dario

Izvornik
Geoinformatica (1384-6175) 21 (2017), 2; 263-291

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Big data ; Data stream architectures ; GeoStreaming ; Mobility data ; Parallel processing ; Real-time distributed ; Spatio-temporal data streams

Sažetak
Recent rapid development of wireless communication, mobile computing, global navigation satellite systems (GNSS), and spatially enabled sensors are leading to an exponential growth of available mobility data produced continuously at high speed. Due to these advancements, a new class of monitoring applications has come to the focus, including real-time intelligent transportation systems, traffic monitoring and mobile objects tracking. These new information flow processing (IFP) application domains need to process huge volume of mobility data arriving in the form of continuous data streams from mobile objects. IFP applications are pushing traditional database technologies beyond their limits due to their massively increasing data volumes and demands for real-time processing. Mobility data, i.e. real-time, transient, time-varying sequences of spatio-temporal data items, generated by embedded positioning sensors demonstrates at least two Big Data core features: volume and velocity. Existing distributed data stream management systems (DSMS), real-time computing systems (RTCS) and their processing models are dominantly based on relational paradigm and continuous operator model. Thus, they have rudimentary spatio-temporal capabilities, provide expensive fault recovery requiring either hot replication or long recovery times, and do not handle faults and slow nodes. The framework proposed in this paper is a cornerstone towards efficient real-time managing and monitoring of mobile objects through distributed spatio-temporal streams processing on large clusters. A prototype implementation is rooted in a new stream processing model that overcomes the challenges of current distributed stream processing models and enable seamless integration with batch and interactive processing like MapReduce.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
036-0361983-2020 - Baze podataka geoprostornih senzora i pokretnih objekata (Galić, Zdravko, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Zdravko Galić (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com link.springer.com

Citiraj ovu publikaciju:

Galić, Zdravko; Mešković, Emir; Osmanović, Dario
Distributed processing of big mobility data as spatio-temporal data streams // Geoinformatica, 21 (2017), 2; 263-291 doi:10.1007/s10707-016-0264-z (međunarodna recenzija, članak, znanstveni)
Galić, Z., Mešković, E. & Osmanović, D. (2017) Distributed processing of big mobility data as spatio-temporal data streams. Geoinformatica, 21 (2), 263-291 doi:10.1007/s10707-016-0264-z.
@article{article, author = {Gali\'{c}, Zdravko and Me\v{s}kovi\'{c}, Emir and Osmanovi\'{c}, Dario}, year = {2017}, pages = {263-291}, DOI = {10.1007/s10707-016-0264-z}, keywords = {Big data, Data stream architectures, GeoStreaming, Mobility data, Parallel processing, Real-time distributed, Spatio-temporal data streams}, journal = {Geoinformatica}, doi = {10.1007/s10707-016-0264-z}, volume = {21}, number = {2}, issn = {1384-6175}, title = {Distributed processing of big mobility data as spatio-temporal data streams}, keyword = {Big data, Data stream architectures, GeoStreaming, Mobility data, Parallel processing, Real-time distributed, Spatio-temporal data streams} }
@article{article, author = {Gali\'{c}, Zdravko and Me\v{s}kovi\'{c}, Emir and Osmanovi\'{c}, Dario}, year = {2017}, pages = {263-291}, DOI = {10.1007/s10707-016-0264-z}, keywords = {Big data, Data stream architectures, GeoStreaming, Mobility data, Parallel processing, Real-time distributed, Spatio-temporal data streams}, journal = {Geoinformatica}, doi = {10.1007/s10707-016-0264-z}, volume = {21}, number = {2}, issn = {1384-6175}, title = {Distributed processing of big mobility data as spatio-temporal data streams}, keyword = {Big data, Data stream architectures, GeoStreaming, Mobility data, Parallel processing, Real-time distributed, Spatio-temporal data streams} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font