Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 823865

Finite Difference Formulation for the Model of a Compressible Viscous and Heat-Conducting Micropolar Fluid with Spherical Symmetry


Mujaković, Nermina; Črnjarić-Žic, Nelida
Finite Difference Formulation for the Model of a Compressible Viscous and Heat-Conducting Micropolar Fluid with Spherical Symmetry // Differential and Difference Equations with Applications / Pinelas, Sandra ; Došlá, Zuzana ; Došlý, Ondřej ; Kloeden, Peter E. (ur.).
Heidelberg: Springer, 2016. str. 293-301 doi:10.1007/978-3-319-32857-7_27


CROSBI ID: 823865 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Finite Difference Formulation for the Model of a Compressible Viscous and Heat-Conducting Micropolar Fluid with Spherical Symmetry

Autori
Mujaković, Nermina ; Črnjarić-Žic, Nelida

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, ostalo

Knjiga
Differential and Difference Equations with Applications

Urednik/ci
Pinelas, Sandra ; Došlá, Zuzana ; Došlý, Ondřej ; Kloeden, Peter E.

Izdavač
Springer

Grad
Heidelberg

Godina
2016

Raspon stranica
293-301

ISBN
978-3-319-32857-7

Ključne riječi
micropolar fluid flow, finite difference scheme, spherical symmetry, numerical solutions, initial-boundary value problem

Sažetak
We are dealing with the non-stationary 3D flow of a compressible viscous heat-conducting micropolar fluid, which is in the thermodynamical sense perfect and polytropic. It is assumed that the domain is a subset of ${; ; ; \bf R^3}; ; ; $ and that the fluid is bounded with two concentric spheres. The homogeneous boundary conditions for velocity, microrotation, heat flux, and spherical symmetry of the initial data are proposed. By using the assumption of the spherical symmetry, the problem reduces to the one-dimensional problem. The finite difference formulation of the considered problem is obtained by defining the finite difference approximate equations system. The corresponding approximative solutions converge to the generalized solution of our problem globally in time, which means that the defined numerical scheme is convergent. Numerical experiments are performed by applying the proposed finite difference formulation. We compare the numerical results obtained by using the finite difference and the Faedo-Galerkin approach and analyze the properties of the numerical solutions.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Temeljne tehničke znanosti



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci, Fakultet za matematiku

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Mujaković, Nermina; Črnjarić-Žic, Nelida
Finite Difference Formulation for the Model of a Compressible Viscous and Heat-Conducting Micropolar Fluid with Spherical Symmetry // Differential and Difference Equations with Applications / Pinelas, Sandra ; Došlá, Zuzana ; Došlý, Ondřej ; Kloeden, Peter E. (ur.).
Heidelberg: Springer, 2016. str. 293-301 doi:10.1007/978-3-319-32857-7_27
Mujaković, N. & Črnjarić-Žic, N. (2016) Finite Difference Formulation for the Model of a Compressible Viscous and Heat-Conducting Micropolar Fluid with Spherical Symmetry. U: Pinelas, S., Došlá, Z., Došlý, O. & Kloeden, P. (ur.) Differential and Difference Equations with Applications. Heidelberg, Springer, str. 293-301 doi:10.1007/978-3-319-32857-7_27.
@inbook{inbook, author = {Mujakovi\'{c}, Nermina and \v{C}rnjari\'{c}-\v{Z}ic, Nelida}, year = {2016}, pages = {293-301}, DOI = {10.1007/978-3-319-32857-7\_27}, keywords = {micropolar fluid flow, finite difference scheme, spherical symmetry, numerical solutions, initial-boundary value problem}, doi = {10.1007/978-3-319-32857-7\_27}, isbn = {978-3-319-32857-7}, title = {Finite Difference Formulation for the Model of a Compressible Viscous and Heat-Conducting Micropolar Fluid with Spherical Symmetry}, keyword = {micropolar fluid flow, finite difference scheme, spherical symmetry, numerical solutions, initial-boundary value problem}, publisher = {Springer}, publisherplace = {Heidelberg} }
@inbook{inbook, author = {Mujakovi\'{c}, Nermina and \v{C}rnjari\'{c}-\v{Z}ic, Nelida}, year = {2016}, pages = {293-301}, DOI = {10.1007/978-3-319-32857-7\_27}, keywords = {micropolar fluid flow, finite difference scheme, spherical symmetry, numerical solutions, initial-boundary value problem}, doi = {10.1007/978-3-319-32857-7\_27}, isbn = {978-3-319-32857-7}, title = {Finite Difference Formulation for the Model of a Compressible Viscous and Heat-Conducting Micropolar Fluid with Spherical Symmetry}, keyword = {micropolar fluid flow, finite difference scheme, spherical symmetry, numerical solutions, initial-boundary value problem}, publisher = {Springer}, publisherplace = {Heidelberg} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font