Pregled bibliografske jedinice broj: 81560
Stable Algorithm for Calculating with Q-splines
Stable Algorithm for Calculating with Q-splines // Applied MAthematics and Computation / Rogina, M.; Hari, V.;Limić, N. (ur.).
Zagreb: Dept. of Mathematics, University of Zagreb, 2001. str. 99-105 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 81560 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Stable Algorithm for Calculating with Q-splines
Autori
Bosner, Tina ; Rogina, Mladen
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Applied MAthematics and Computation
/ Rogina, M.; Hari, V.;Limić, N. - Zagreb : Dept. of Mathematics, University of Zagreb, 2001, 99-105
Skup
Applied Mathematics and Computation
Mjesto i datum
Dubrovnik, Hrvatska, 13.09.1999. - 18.09.1999
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
T-spline; Q-spline; Knot insertion
Sažetak
We are using a technique to calculate with Tchebycheffian splines of order $\le 4$, based on the known derivative formula for Tchebycheffian splines and Oslo type algorithm, to produce simple formul\ae for qB-splines developed by Kulkarni and Laurent. Starting with the known fact that local basis for $q$-splines of order 3 and 4 can be evaluated by making positive linear combinations of less smooth, one order higher polynomial B-splines, we deduce a simple and stable algorithm for such splines. It is an interesting fact in itself, that the coefficients in such linear combinations are discrete Tchebycheffian splines, and therefore make a partition of unity. The same is true for qB-splines themselves.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037011
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb