Pregled bibliografske jedinice broj: 809088
A note on the theorem of Johnson, Palmer and Sell
A note on the theorem of Johnson, Palmer and Sell // Periodica mathematica Hungarica, 75 (2017), 2; 167-171 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 809088 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A note on the theorem of Johnson, Palmer and Sell
Autori
Dragičević, Davor
Izvornik
Periodica mathematica Hungarica (0031-5303) 75
(2017), 2;
167-171
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Sacker-Sell spectrum ; Lyapunov exponents ; Invariant measures ; stability
Sažetak
The well-known theorem of Johnson, Palmer and Sell as- serts that the endpoints of the Sacker-Sell spectrum of a given cocycle A over a topological dynamical system (M, f ) are realized as Lyapunov exponents with respect to some ergodic invariant probability measure for f . The main purpose of this note is to give an alternative proof of this theorem which uses a more recent and independent result of Cao which formulates sufficient conditions for the uniform hyperbolicity of a given cocyle A in terms of the nonvanishing of Lyapunov exponents for A. We also discuss the possibility of obtaining positive results related to the stability of the Sacker-Sell spectra under the perturbations of the cocycle A.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-2285 - Geometrijska, ergodička i topološka analiza nisko-dimenzionalnih dinamičkih sustava (GETDYN) (Slijepčević, Siniša, HRZZ - 2014-09) ( CroRIS)
Profili:
Davor Dragičević
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus