Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 808955

A note on the zeroth products of Frenkel–Jing operators


Kožić, Slaven
A note on the zeroth products of Frenkel–Jing operators // Journal of algebra and its applications, 16 (2017), 2; 1750053, 25 doi:10.1142/S0219498817500530 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 808955 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A note on the zeroth products of Frenkel–Jing operators

Autori
Kožić, Slaven

Izvornik
Journal of algebra and its applications (0219-4988) 16 (2017), 2; 1750053, 25

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Affine Lie algebra ; Quantum affine algebra ; Quantum vertex algebra ; Highest weight module

Sažetak
Let gˆ be an untwisted affine Kac–Moody Lie algebra. The top of every irreducible highest weight integrable gˆ-module is the finite-dimensional irreducible g-module, where the action of the simple Lie algebra g is given by zeroth products arising from the underlying vertex operator algebra theory. Motivated by this fact, we consider zeroth products of level 1 Frenkel–Jing operators corresponding to Drinfeld realization of the quantum affine algebra Uq(slˆn+1). By applying these products, which originate from the quantum vertex algebra theory developed by Li, on the extension of Koyama vertex operator Yi(z), we obtain an infinite-dimensional vector space ⟨Yi(z)⟩. Next, we introduce an associative algebra Uq(sln+1)z, a certain quantum analogue of the universal enveloping algebra U(sln+1), and construct some infinite-dimensional Uq(sln+1)z-modules L(λi)z corresponding to the finite-dimensional irreducible Uq(sln+1)-modules L(λi). We show that the space ⟨Yi(z)⟩ carries a structure of an Uq(sln+1)z-module and, furthermore, we prove that the Uq(sln+1)z-module ⟨Yi(z)⟩ is isomorphic to the Uq(sln+1)z-module L(λi)z.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-2634 - Algebarske i kombinatorne metode u teoriji verteks algebri (ACMVAT) (Adamović, Dražen, HRZZ - 2013-11) ( CroRIS)
MZOS-037-0372794-2806 - Algebre verteks-operatora i beskonačno dimenzionalne Liejeve algebre (Primc, Mirko, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Slaven Kožić (autor)

Poveznice na cjeloviti tekst rada:

doi www.worldscientific.com doi.org

Citiraj ovu publikaciju:

Kožić, Slaven
A note on the zeroth products of Frenkel–Jing operators // Journal of algebra and its applications, 16 (2017), 2; 1750053, 25 doi:10.1142/S0219498817500530 (međunarodna recenzija, članak, znanstveni)
Kožić, S. (2017) A note on the zeroth products of Frenkel–Jing operators. Journal of algebra and its applications, 16 (2), 1750053, 25 doi:10.1142/S0219498817500530.
@article{article, author = {Ko\v{z}i\'{c}, Slaven}, year = {2017}, pages = {25}, DOI = {10.1142/S0219498817500530}, chapter = {1750053}, keywords = {Affine Lie algebra, Quantum affine algebra, Quantum vertex algebra, Highest weight module}, journal = {Journal of algebra and its applications}, doi = {10.1142/S0219498817500530}, volume = {16}, number = {2}, issn = {0219-4988}, title = {A note on the zeroth products of Frenkel–Jing operators}, keyword = {Affine Lie algebra, Quantum affine algebra, Quantum vertex algebra, Highest weight module}, chapternumber = {1750053} }
@article{article, author = {Ko\v{z}i\'{c}, Slaven}, year = {2017}, pages = {25}, DOI = {10.1142/S0219498817500530}, chapter = {1750053}, keywords = {Affine Lie algebra, Quantum affine algebra, Quantum vertex algebra, Highest weight module}, journal = {Journal of algebra and its applications}, doi = {10.1142/S0219498817500530}, volume = {16}, number = {2}, issn = {0219-4988}, title = {A note on the zeroth products of Frenkel–Jing operators}, keyword = {Affine Lie algebra, Quantum affine algebra, Quantum vertex algebra, Highest weight module}, chapternumber = {1750053} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Zentrallblatt für Mathematik/Mathematical Abstracts
  • CNKI
  • Current Contents®/Physical Chemical and Earth Sciences
  • Ebsco Discovery Service
  • ExLibris Primo Central
  • Google Scholar
  • Journal Citation Reports/Science Edition
  • Mathematical Reviews
  • OCLC WorldCat®
  • Proquest Summon
  • Science Citation Index Expanded
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font