Pregled bibliografske jedinice broj: 798680
Recurent Neural Network as a Tool for Parameter Anomaly Detection in Thermal Power Plant
Recurent Neural Network as a Tool for Parameter Anomaly Detection in Thermal Power Plant // International journal of scientific and engineering research, 6 (2015), 8; 448-455 (podatak o recenziji nije dostupan, članak, ostalo)
CROSBI ID: 798680 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Recurent Neural Network as a Tool for Parameter Anomaly Detection in Thermal Power Plant
Autori
Hajdarević, Amel ; Banjanović-Mehmedović, Lejla ; Dzananović, Izet ; Mehmedović, Fahrudin ; Ayaz Ahmad, Mohamed
Izvornik
International journal of scientific and engineering research (2229-5518) 6
(2015), 8;
448-455
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo
Ključne riječi
Anomaly detection; Industrial application; Recurrent neural network;
Sažetak
Anomaly detection refers to the problem of finding patterns in data that do not conform to expected behavior. It is very important to timely detect parameter anomalies in real-world running thermal power plant system, which is one of the most complex dynamical systems. Artificial neural networks are one of anomaly detection techniques. This paper presents the Elman recurrent neural network as method to solve the problem of parameter anomaly detection in selected sections of thermal power plant (steam superheaters and steam drum). Inputs for neural networks are some of the most important process variables of these sections. In addition to the implementation of this network for anomaly detection, the effect of key parameter change on anomaly detection results is also shown. Results confirm that recurrent neural network is good approach for anomaly detection problem, especially in real-time industrial applications.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb