Pregled bibliografske jedinice broj: 795514
Insights on the neuromagnetic representation of temporal asymmetry in human auditory cortex
Insights on the neuromagnetic representation of temporal asymmetry in human auditory cortex // PLoS One, 11 (2016), 4; e0153947-1 doi:10.1371/journal.pone.0153947 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 795514 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Insights on the neuromagnetic representation of temporal asymmetry in human auditory cortex
Autori
Tabas, Alejandro ; Siebert, Anita ; Supek, Selma ; Pressnitzer, Daniel ; Balaguer-Ballester ; Rupp, Andre
Izvornik
PLoS One (1932-6203) 11
(2016), 4;
E0153947-1
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
magnetoencephalography; auditory evoked fields (AEF); N100m; temporal asymmetry processing; damped and ramped tones; auditory modelling; psychophysical studies
Sažetak
Communication sounds are typically asymmetric in time and human listeners are highly sensitive to this short-term temporal asymmetry. Nevertheless, causal neurophysiological correlates of auditory perceptual asymmetry remain largely elusive to our current analyses and models. Auditory modelling and animal electrophysiological recordings suggest that perceptual asymmetry results from the presence of multiple time scales of temporal integration, central to the auditory periphery. To test this hypothesis we recorded auditory evoked fields (AEF) elicited by asymmetric sounds in humans. We found a strong correlation between perceived tonal salience of ramped and damped sinusoids and the AEFs, as quantified by the amplitude of the N100m dynamics. The N100m amplitude increased with stimulus half-life time, showing a maximum difference between the ramped and damped stimulus for a modulation half-life time of 4 ms which is greatly reduced at 0.5 ms and 32 ms. This behaviour of the N100m closely parallels psychophysical data in a manner that: i) longer half-life times are associated with a stronger tonal percept, and ii) perceptual differences between damped and ramped are maximal at 4 ms half-life time. Furthermore, the N100m magnitude is successfully explained by two pitch perception models using multiple scales of temporal integration of auditory nerve activity patterns. This striking correlation between AEFs, perception, and model predictions suggests that the N100m reflects physiological mechanisms of temporal asymmetry processing of pitch.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
POVEZANOST RADA
Projekti:
MZT 0119265
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Selma Supek
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE
Uključenost u ostale bibliografske baze podataka::
- MEDLINE