Pregled bibliografske jedinice broj: 784400
A realization of certain modules for the N=4 superconformal algebra and the affine Lie algebra A_2 ^(1)
A realization of certain modules for the N=4 superconformal algebra and the affine Lie algebra A_2 ^(1) // Transformation groups, 21 (2016), 2; 299-327 doi:10.1007/s00031-015-9349-2 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 784400 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A realization of certain modules for the N=4 superconformal algebra and the affine Lie algebra A_2 ^(1)
(A realization of certain modules for the N=4 superconformal algebra and the affine Lie algebra A_2 ^{;;; ; ; (1)};;; ; ;)
Autori
Adamović, Dražen
Izvornik
Transformation groups (1083-4362) 21
(2016), 2;
299-327
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
vertex superalgebras ; affine Lie algebras ; admissible representations ; N = 4 superconformal algebra ; logarithmic CFT
Sažetak
We shall first present an explicit realization of the simple $N=4$ superconformal vertex algebra $L_{; ; ; ; ; c}; ; ; ; ; ^{; ; ; ; ; N=4}; ; ; ; ; $ with central charge $c=-9$. This vertex superalgebra is realized inside of the $ b c \beta \gamma $ system and contains a subalgebra isomorphic to the simple affine vertex algebra $L_{; ; ; ; ; A_1}; ; ; ; ; (- \tfrac{; ; ; ; ; 3}; ; ; ; ; {; ; ; ; ; 2}; ; ; ; ; \Lambda_0)$. Then we construct a functor from the category of $L_{; ; ; ; ; c}; ; ; ; ; ^{; ; ; ; ; N=4}; ; ; ; ; $-- modules with $c=-9$ to the category of modules for the admissible affine vertex algebra $L_{; ; ; ; ; A_{; ; ; ; ; 2}; ; ; ; ; }; ; ; ; ; (-\tfrac{; ; ; ; ; 3}; ; ; ; ; {; ; ; ; ; 2}; ; ; ; ; \Lambda_0)$. By using this construction we construct a family of weight and logarithmic modules for $L_{; ; ; ; ; c}; ; ; ; ; ^{; ; ; ; ; N=4}; ; ; ; ; $ and $L_{; ; ; ; ; A_{; ; ; ; ; 2}; ; ; ; ; }; ; ; ; ; (- \tfrac{; ; ; ; ; 3}; ; ; ; ; {; ; ; ; ; 2}; ; ; ; ; \Lambda_0)$. We also show that a coset subalgebra of $L_{; ; ; ; ; A_{; ; ; ; ; 2}; ; ; ; ; }; ; ; ; ; (- \tfrac{; ; ; ; ; 3}; ; ; ; ; {; ; ; ; ; 2}; ; ; ; ; \Lambda_0)$ is an logarithmic extension of the $W(2, 3)$-- algebra with $c=-10$. We discuss some generalizations of our construction based on the extension of affine vertex algebra $L_{; ; ; ; ; A_1}; ; ; ; ; (k \Lambda_0)$ such that $k+2 = 1/p$ and $p$ is a positive integer.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-2634 - Algebarske i kombinatorne metode u teoriji verteks algebri (ACMVAT) (Adamović, Dražen, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Dražen Adamović
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts