Pregled bibliografske jedinice broj: 782499
Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom
Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom // Nano letters, 15 (2015), 5; 3431-3438 doi:10.1021/acs.nanolett.5b00768 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 782499 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom
Autori
Feng, Jiang Dong ; Liu, Ke ; Graf, Michael ; Lihter, Martina ; Bulushev, Roman D. ; Dumcenco, Dumitru ; Alexander, Duncan T. L. ; Krasnozhon, Daria ; Vuletic, Tomislav ; Kis, Andras ; Rađenović, Aleksandra
Izvornik
Nano letters (1530-6984) 15
(2015), 5;
3431-3438
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
solid-state nanopores; 2D materials; molybdenum disulphide (MoS2); electrochemical reaction (ECR); DNA translocation
Sažetak
Ultrathin nanopore membranes based on 2D materials have demonstrated ultimate resolution toward DNA sequencing. Among them, molybdenum disulphide (MoS2) shows long-term stability as well as superior sensitivity enabling high throughput performance. The traditional method of fabricating nanopores with nanometer precision is based on the use of focused electron beam in transmission electron microscope (TEM). This nanopore fabrication process is time-consuming, expensive, not scalable and hard to control below 1 nm. Here, we exploited the electrochemical activity of MoS2 and developed a convenient and scalable method to controllably make nanopores in a single layer MoS2 with sub-nanometer precision using electrochemical reaction (ECR). The electrochemical reaction of a single layer MoS2 is initiated at the location of defects or single atom vacancy, followed by the successive removals of individual atoms or unit cells from single layer MoS2 lattice and finally formation of a nanopore. Step-like features in the ionic current through the growing nanopore provide direct feedback on the nanopore size inferred from a widely used conductance vs. pore size model. Furthermore, DNA translocations can be detected in-situ when as-fabricated MoS2 nanopores are used. The atomic resolution and accessibility of this approach paves the way for mass production of nanopores in 2D membranes for potential solid-state nanopore sequencing.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE
- Nature Index