Pregled bibliografske jedinice broj: 782259
Root separation for reducible integer polynomials
Root separation for reducible integer polynomials // The Geometry, Algebra and Analysis of Algebraic Numbers
Banff, 2015. str. 5-5 (pozvano predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 782259 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Root separation for reducible integer polynomials
Autori
Dujella, Andrej ; Bugeaud, Yann
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
The Geometry, Algebra and Analysis of Algebraic Numbers
/ - Banff, 2015, 5-5
Skup
The Geometry, Algebra and Analysis of Algebraic Numbers
Mjesto i datum
Banff, Kanada, 04.10.2015. - 09.10.2015
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
root separation; integer polynomials
Sažetak
We consider the question how close to each other can be two distinct roots of an integer polynomial P(X) of degree d. We compare the distance between two distinct roots of P(X) with its height H(P), defined as the maximum of the absolute values of its coefficients. The first result in this direction in due to Mahler, who proved that the distance is > c(d)*H(P)^(-d+1), for an explicit constant c(d), depending only on d. We will present some recent results in the opposite direction, obtained by constructing explicit parametric families of (monic) reducible polynomials having two roots very close to each other.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb