Pregled bibliografske jedinice broj: 781601
Fuzzy Knowledge-Based Image Annotation Refinement
Fuzzy Knowledge-Based Image Annotation Refinement // Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition IPCV'15 / Arabnia, Hamid R. ; Deligiannidis, Leonidas ; Tinetti, Fernando G. (ur.).
Las Vegas (NV): The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2015. str. 284-290 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 781601 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fuzzy Knowledge-Based Image Annotation Refinement
Autori
Ivašić-Kos, Marina ; Pobar, Miran ; Ribarić, Slobodan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition IPCV'15
/ Arabnia, Hamid R. ; Deligiannidis, Leonidas ; Tinetti, Fernando G. - Las Vegas (NV) : The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2015, 284-290
ISBN
1-60132-404-9
Skup
International Conference on Image Processing, Computer Vision, and Pattern Recognition IPCV'15
Mjesto i datum
Las Vegas (NV), Sjedinjene Američke Države, 27.07.2015. - 30.07.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
automatic image annotation ; annotation refinement ; fuzzy knowledge representation scheme ; fuzzy inference
Sažetak
Automatic image annotation methods automatically assign labels to images in order to facilitate tasks such as image retrieval. Incorrect labels may negatively influence the search results so image annotation should be as accurate as possible. Labels pertaining to objects or to whole scenes are commonly used for image annotation, and precision is especially important in case when scene labels are inferred from objects, as errors in the object labels may propagate to the scene level. To improve the annotation precision, the idea is to infer which labels are incorrect using the context of other labels and the knowledge about objects and their relations. This procedure is here referred to as annotation refinement. The proposed approach used in this paper includes a fuzzy knowledge base and uses the fuzzy inference algorithms to detect and discard automatically obtained object labels that do not fit the context of other detected objects.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
MZO-ZP-036-0361935-1954 - Teorija, modeliranje i uporaba autonomno orijentiranih računarskih struktura (Ribarić, Slobodan, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus