Pregled bibliografske jedinice broj: 780726
The Desulfinylation of Prop-2-enesulfinic Acid: Experimental Results and Mechanistic Theoretical Analysis
The Desulfinylation of Prop-2-enesulfinic Acid: Experimental Results and Mechanistic Theoretical Analysis // Journal of the American Chemical Society, 131 (2009), 9547-9561 doi:10.1021/ja901565s (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 780726 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Desulfinylation of Prop-2-enesulfinic Acid: Experimental Results and Mechanistic Theoretical Analysis
Autori
Varela-Álvarez, A. ; Markovic, D. ; Sordo, J. A. ; Vogel, P.
Izvornik
Journal of the American Chemical Society (0002-7863) 131
(2009);
9547-9561
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
allylic sulfinic acid; ene reaction; computation studies; mechanism
Sažetak
The potential energy surfaces of the desulfinylation of prop-2-enesulfinic acid (13) in CH(2)Cl(2) solution at -15 degrees C have been explored by quantum calculations and analyzed with kinetic data obtained for the reaction in absence or presence of additives. Monomeric 13 adopts a preferred conformation with gauche S=O/sigma(C(1)-C(2) bond pairs and the O-H bond pointing toward C(3). It equilibrates with the more stable dimer (13)(2) (at -15 degrees C) formed by two O-H...O=S hydrogen bonds and in which the S=O/sigmaC(1)-C(2) are gauche also, but the SOH moieties are antiperiplanar with respect to sigma(C(1)-C(2)). Dimer (13)(2) undergoes desulfinylation into propene + SO(2) + 13 following a one-step, concerted mechanism. The preferred transition state is a six-membered, chairlike transition structure (C...S elongation and S-O...H...C(3) hydrogen transfer occur in concert) in which the S=O/sigma(C(1)-C(2)) bonds are gauche (S=O adopt pseudoaxial positions). There are at least 48 transition states, each one defining a different pathway, all with similar calculated free energies (DeltaG(double dagger) = 25.3-28.6 kcal/mol), which makes the bimolecular (autocatalyzed) retro-ene elimination of SO(2) competing (entropy factor) with a monomolecular process for which the transition state (calculated DeltaG(double dagger) = 24.3 kcal/mol) implies only one molecule of sulfinic acid. This agrees with the experimental rate law of the reaction which is first order in the concentration of dimer (13)(2). SO(2), CF(3)COOH, and BF(3) x Me(2)O do not catalyze the reaction. In the presence of an excess of BF(3) x Me(2)O the desulfinylation is completely inhibited due to the formation of a stable tetramolecular complex of type (CH(2)=CHCH(2)SO(2)H x BF(3))(2) (18), for which quantum calculations show that the S=O/sigma(C(1)-C(2)) bonds are antiperiplanar whereas the S-OH/sigma(C(1)-C(2)) bonds are gauche. Independently of the additive, the retro-ene eliminations of SO(2) are calculated to be concerted and have transition states adopting six-membered cyclic structures in which S=O and sigma(C(1)-C(2)) are gauche, the S=O interacting with the additive. Preliminary experiments suggested that the thermodynamically unfavored ene reaction of SO(2) with propene can occur at low temperature using 1 equiv of BF(3).
Izvorni jezik
Engleski
Znanstvena područja
Kemija
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI