ࡱ> gifdAbjbj>> DTT<P  >N^^^rrr8tLrljJ"":""### l l l l l l l$n`qP/l9^#####/l^^""hl111#r^"^" l1# l11A_~Cd";O+a4k~l0laPq.qhCd"edq^e##1#####/l/l1###l####q######### :DUALITY IN MONOPOLY Ilko Vranki, Mira Krpan University of Zagreb, Faculty of Economics and Business Trg J. F. Kennedy 6, 10000 Zagreb, Croatia {ivrankic, mkrpan}@efzg.hr Abstract: This paper follows our theoretical research on duality in microeconomic theory and applies the duality principles, which rest on the price taking behaviour of economic subjects, on the monopolistic behaviour. The standard approach of deriving the profit function for the monopolist from the production function and defined pseudo production function is accompanied by the alternative approach in which the starting point is the pseudo cost function. Finally, starting from the derived profit function the pseudo production function is recovered and a version of Hotellings lemma is given. All results are illustrated with a numerical example. Keywords: duality, pseudo production function, pseudo cost function, profit function, Hotellings lemma. INTRODUCTION Rationality of economic agents in microeconomic theory is described by the optimization problems in which convex sets play an important role. The possibility of characterizing them in two ways naturally gives rise to duality in microeconomic theory [3,4]. Duality in microeconomic theory includes derivation and recovering of the alternative representations of the consumer preferences and the production technology. Since duality in this case rests on the price taking behaviour, the question is how can the principles of duality be applied in the case of a monopolistic firm where the single producer has influence on the price which he charges for the product [1,2,5,7]? In this paper we show how the profit function for the monopolist for the given demand function can be obtained by introducing the pseudo cost function [6] and solving the profit maximization problem. The standard approach in which the production function and defined pseudo production function is the starting point is also derived. Finally, starting from the derived profit function we show how the pseudo production function can be recovered. Although Hotelling's lemma, a famous result from the microeconomic theory, defined below, cannot be directly applied in obtaining the monopolist's supply function for the given demand function, a version of Hotelling's lemma is illustrated. FROM THE PSEUDO PRODUCTION FUNCTION TO THE PROFIT FUNCTION The emphasis is on a monopolist whose objective is to maximize profit. The monopolist faces the following negatively sloped inverse demand function [5]  EMBED Equation.3 , (1) where  EMBED Equation.3  is the price of the monopolists product and  EMBED Equation.3  represents the influence on demand of other variables, for example income, and D is a function of  EMBED Equation.DSMT4  for which  EMBED Equation.3 . The monopolists technology is described by the production function  EMBED Equation.3 , where  EMBED Equation.3  is the vector of inputs used in the production of the monopolists product  EMBED Equation.3 . Since the total revenue function is described by  EMBED Equation.DSMT4 , the profit maximization model for the monopolist in which the quantities of inputs are the choice variables reduces to  EMBED Equation.3 , (2) where w is the vector of input prices. If we form the pseudo production function [5]  EMBED Equation.3  (3) as deflated revenue function and interpret the parameter w in (2) as the price of the pseudo product, then the known results from duality theory in microeconomics could be applied. It is assumed that sufficient regularity conditions are satisfied so that the maximum exists [1,5,7]. The first order necessary conditions for the profit maximization problem reduce to  EMBED Equation.DSMT4  (4) Therefore, the monopolist will hire the levels of inputs for which the marginal revenue of the corresponding input,  EMBED Equation.3 , is equal to its marginal cost,  EMBED Equation.3 . An interior solution is assumed. It is assumed also that the input market is perfectly competitive so that the monopolist takes input prices as given. Solving the first order necessary conditions leads us to the input demand functions. By substituting the derived input demand functions in the production function, for the given demand function, we obtain the monopolist's supply function. The profit function is obtained by substituting the derived functions in the goal function in (2). To illustrate this procedure, the production function  EMBED Equation.3  (5) is chosen [6]. Let us start from the linear inverse market demand function,  EMBED Equation.3 , (6) for which the pseudo production function is defined as follows  EMBED Equation.3 . (7) The profit maximization model reduces to  EMBED Equation.3 . (8) First order necessary conditions are expressed by the following system of equations  EMBED Equation.DSMT4 , (9) Dividing both expressions in (9) gets us to  EMBED Equation.3 . We can express  EMBED Equation.DSMT4  as a function of  EMBED Equation.DSMT4 ,  EMBED Equation.3 , whose substitution in one of (9) leads us to  EMBED Equation.3 . By solving it we get the monopolists demand function for the first input,  EMBED Equation.DSMT4 . By inserting it in  EMBED Equation.3 , we get the monopolists demand function for the second input,  EMBED Equation.DSMT4 . The supply function for the monopolist, for the given demand function, is then  EMBED Equation.3 . By inserting the derived supply and demand functions in the goal function of a producer, the profit function is obtained,  EMBED Equation.DSMT4  (10) FROM THE PSEUDO COST FUNCTION TO THE PROFIT FUNCTION Another method for obtaining the monopolist's profit function for the given demand function is to start from the monopolists cost function,  EMBED Equation.3 , which is an alternative way of describing technology [9]. The decision variable in this model of the monopolists profit maximization problem is the quantity of production,  EMBED Equation.3 . (11) Taking into account the definition of the pseudo production function,  EMBED Equation.3 , the quantity of production can be expressed as the function of pseudo production,  EMBED Equation.3 . In this case the profit maximization problem reduces to  EMBED Equation.3  (12) where  EMBED Equation.3  can be called the pseudo cost function. The first order necessary condition for the profit maximization problem gives the following equation which needs to be solved to get us to the pseudo production function,  EMBED Equation.3 . (13) Therefore, profit maximization for the given demand function in this model is characterized by the equality between the price of the pseudo product and the marginal pseudo cost. To illustrate how the profit function for the monopolist can be derived by starting from the pseudo cost function, we start from the chosen production function in (5). The cost function is derived from the model of cost minimization for the given level of production,  EMBED Equation.3  (14) From the theory of production it is known that the economic efficiency is characterized by the equality between the marginal rate of technical substitution  EMBED Equation.3  and the input price ratio  EMBED Equation.3  [8]. In our case it is  EMBED Equation.DSMT4 , from which the long-run expansion path is derived, which describes the optimal combinations of inputs at each output level as output expands, EMBED Equation.DSMT4 . Substituting it in the constraint, we get the conditional input demand functions, which give the cost minimizing input levels for the given output level,  EMBED Equation.3  and  EMBED Equation.3 , whose substitution in the goal function of (14) gives us the cost function  EMBED Equation.3 . (15) Our goal is to express it in terms of the pseudo production function and to obtain the pseudo cost function. For the given inverse demand function in (6) the pseudo production function is defined as  EMBED Equation.3 . Therefore, the quantity of production is related to the pseudo production function by the following quadratic equation  EMBED Equation.3  from which it follows  EMBED Equation.3  and the pseudocost function as a function of pseudoproduction function collapses to  EMBED Equation.3 . (16) Therefore, the following optimization model needs to be solved  EMBED Equation.DSMT4 . (17) The first order necessary condition is  EMBED Equation.3 . (18) Solving the equation for y gives the pseudoproduction function,  EMBED Equation.DSMT4  (19) whose substitution into the goal function leads to the same profit function as before,  EMBED Equation.DSMT4  (20) HOTELLINGS LEMMA According to Hotellings lemma [1,2,5,7,8], the derivative of the profit function for a perfectly competitive, price-taking firm with respect to the product price of a firm is equal to the firms quantity supplied. Since the monopolist is not the price taker, the question is how can be Hotellings lemma applied in this case. Starting from the monopolists profit function and looking at the parameter w as the price of the pseudo product, we can apply Hotellings lemma and get the pseudo production function [6],  EMBED Equation.3  (21) The supply function of a monopolist can be obtained from the pseudo production function for the given demand function,  EMBED Equation.3 or  EMBED Equation.3 . So we got the quadratic equation which needs to be solved to get the supply function,  EMBED Equation.3 , for the given demand function  EMBED Equation.DSMT4 . (22) FROM THE PROFIT FUNCTION TO THE PSEUDO PRODUCTION FUNCTION Starting from the profit function for the monopolist, how can we go back and recover the pseudo production function? Since the profit function gives the maximum profit for every combination of input prices,  EMBED Equation.3  and  EMBED Equation.3 , and the parameter w, its definition brings us to the following inequality  EMBED Equation.3 . (23) Definition of the pseudo production function enables us to rewrite the previous inequality as  EMBED Equation.3 , (24) from which it follows that the pseudo production function is the result of the following optimization problem  EMBED Equation.3 . (25) By normalizing the price of the pseudo product and dividing all the input prices by  EMBED Equation.3 ,  EMBED Equation.3 , the previous optimization problem reduces to  EMBED Equation.3  (26) and  EMBED Equation.3 . (27) Its solution is the monopolist's pseudo production function. Below we illustrate how to recover the pseudo production function from the profit function. Starting from our derived profit function in (10), the normalized profit function is  EMBED Equation.DSMT4  and the pseudo production function can be obtained as the solution to the following optimization problem  EMBED Equation.DSMT4 . (28) The system of equations that expresses the first order necessary conditions follows,  EMBED Equation.3  (29) Multiplying quantities of inputs gives  EMBED Equation.3  which implies  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4 . The product of the corresponding input with its price reduces to  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4 . Inserting the given results in the goal function gives  EMBED Equation.DSMT4  (30) which is the pseudo production function we started from. CONCLUSION Since duality in microeconomics rests on price taking behaviour, the main idea was to apply the known duality principles to the monopolistic case. In deriving the profit function for the monopolist the standard approach is shown which includes starting from the production function and the defined pseudo production function. We give another approach by starting from the pseudo cost function. Finally, starting from the derived profit function the pseudo production function is recovered. A version of Hotellings lemma, important from the empirical standpoint, is given. Application of the duality theory in monopoly to the real data is left for the future research. References: [1] Appelbaum, E. (1975). Essays in the Theory and Applications of Duality in Economics. PhD Thesis. Vancouver:University of British Columbia. [2] Appelbaum, E. (1979). Testing Price Taking Behaviour. Journal of Econometrics, 9: 283294. [3] Blume, L. E. (2008). Convex Programming. In Durlauf, S. N., Blume, L. E. (Eds.). The New Palgrave Dictionary of Economics Online. doi:10.1057/9780230226203.0314. [4] Blume, L. E. (2008). Duality. In Durlauf, S. N., Blume, L. E. (Eds.). The New Palgrave Dictionary of Economics Online. doi:10.1057/9780230226203.0411. [5] Diewert, W.E. (1982). Duality Approaches to Microeconomic Theory. In Intriligator, M.D., Arrow, K..J. (Eds.). Handbook of Mathematical Economics (pp. 535599). Amsterdam: North Holland. [6] Krpan, M. (2011). Dualnost u mikroekonomskoj teoriji. PhD Thesis. Zagreb: Sveu iliate u Zagrebu, Ekonomski fakultet-Zagreb. [7] Lau, L. J. (1978). Applications of Profit Function. In Fuss, M., McFadden, D. (Eds.). Production Economics: A Dual Approach to Theory and Applications (pp. 133 216). Vol II, Part IV. Amsterdam: North-Ho(*,\^`* L ` b d x  N W ÷vk`U`UJ?J?Jh9jh*CJaJh9jhO?CJaJh9jhFCJaJh9jh+jCJaJh9jh2CJaJh9jhFCJaJh/Uh5aJ h8I 5aJh.+hb-8CJaJmH sH h.+h@ 0JCJh.+h0JCJh.+hqX5mH sH h.+hb-85mH sH h.+h5mH sH h/UhCJaJmH sH h.+hmH sH h.+h+jmH sH *,`* ` b d A B gdJ& & Fgd[gd[  n^n`gd?Q$  n^n`a$gd?Q n^n`gd[ 7$8$H$gd| $ Oa$gd[$a$gd[gd[gd[    h o s }   > ? @ A K L S U f |laVKh|hFmH sH h|hmH sH h|h+jmH sH h/Uh5CJaJmH sH h/Uh5CJaJmH sH h1PhaJh|hsCJaJh9jhsCJaJh9jh+jCJaJh9jh2CJaJh9jh1PCJaJh9jhO?CJaJh9jh*CJaJh{CJaJh9jhFCJaJh9jhQBCJaJf o q | } mn|ʿꨡ|vmggm^X hFaJh/UhFaJ h=aJh/Uh+jaJ hc{+aJ h#[gaJh/Uh#[gaJh#[g h.+aJ hX, aJ h{aJ h/Uh+jh/UhCJaJmH sH h.+mH sH h|h0jmH sH h?Q5CJaJmH sH h?QmH sH h|hFmH sH h|hmH sH h|h+jmH sH  Dcdhiklmn 6mz*,FH ./YƺƧƛƧyrnrhFt h/Uhh/Uh55aJmH sH  huaJh{hyk hykaJ h{aJ hQBaJ h=aJh/Uh&<%aJh&<% h&<%aJ hFaJ h}DaJh/UhJ&aJhlh=hehDM h.+aJh/Uh+jaJ hFaJ h^aaJ)Z[8~ 7gd{O  gdq &$  7#xxa$gd5U$  xxa$gd5U  gd[$  7#xxa$gd5Ugd@$$ 7#xxa$gd5Ugdl & Fgd[ $ & Fa$gd[ YZ[   ()*ýwqd[P[@j}UaJ h>}6aJjh|Rh|REHUaJjaY h|RUVaJjh|RUaJ h|R6aJ h|RaJ hqaJ huaJ hYaJ hv@aJjh/UhiEHUaJj=PY h/UhiUVaJh/UhiEHaJ haJh/UhiaJjh/UhiUaJjh/UhiEHUaJYZ[klmnowxyȻ{rgrWH{Br huaJjh/UhbREHUaJj>PY h/UhbRUVaJh/UhbREHaJh/UhbRaJjh/UhbRUaJj h/UhEHUaJjAPY h/UhUVaJh/UhEHaJh/UhaJjh/UhUaJ haJ h*>aJjh>}UaJjX h>}hVEHUaJj*XY hVUVaJ h>}aJ#$;<=>A]pqɺ䱫䡛yypeZh/UhbREHaJhNQh* EHaJh/Uh* aJ h^aaJjh5Uh5UEHUaJj^}Y h5UUVaJ h5UaJjh5UUaJ h@aJh/Uh!{aJjh/UhbREHUaJj?PY h/UhbRUVaJh/UhbREHaJh/UhbRaJjh/UhbRUaJ haJ)3567jkl|}~Ļӻ{k\ӆ͆VP h&SaJ huaJjhuhuEHUaJjXY h/UhuUVaJh/UhbREHaJ h5UaJ hkaJh/UhkaJhkh/UhFaJh/Uhq &aJh/UhbR5aJh/UhbRaJh/Uh* aJ hxaJjh/UhbRUaJjh/UhbREHUaJjCPY h/UhbRUVaJ^_1CDJLSTklmnv¾쩠ztn hxaJ hLaJjhRjhRjEHUaJj`}Y hRjUVaJjhRjUaJh/Uh* aJ h8I aJ hRjaJh/Uh@aJh@h/Uh!{aJ hGaJ hFaJh/Uhq &aJ h|RaJ h&SaJh/UhbRaJh/UhbR6aJ()*+,-MNabcdefTHMNOQܹܣ񋝋yljh/Uh!{UaJ h&maJ hse"aJ hO laJ h&<%aJ hRjaJ h{OaJ ha\aJh/Uh* aJj!hLh#_EHUjyY h#_UVjrhLh#_EHUjyY h#_UVh#_jh#_Uh/UhFaJh/UhbRaJ h#_aJ* UVWghijknopqtdUOFh/Uh* aJ h)aJjs&h/UhbREHUaJjGPY h/UhbRUVaJh/UhbREHaJjh/UhbRUaJh/UhuwaJh/Uhq &aJh/UhxaJhx hxaJh/UhbRaJ h&maJjh/Uh!{UaJj#h/Uh!{EHUaJjFPY h/Uh!{UVaJh/Uh!{EHaJh/Uh!{aJ q>E!!!xl $ a$gd4$ xxa$gdeGxdhgd6$ p#xxa$gdM;$ ]"p#xxa$gdM; p#gd[$ !"p#xxa$gdM;gd[$ 7#xxa$gdM;  gdq &  7#xxgd&m   >jkl|}~Ϝܖܐo`Ϝ劜\h_#j),h/UhbREHUaJjJPY h/UhbRUVaJh/UhbREHaJ h&maJ h)aJ hLaJh/Uh* aJj(h/UhbREHUaJjHPY h/UhbRUVaJh/UhbREHaJjh/UhbRUaJh/UhuwaJh/Uh!{aJh/UhbRaJh/UhFaJ#234568?@ABCE_dfijqrɽ~qmemZj| Y hT1UVjhT1UhT1jJ6hSAhAEHUjwO hSAhAUVjhSAhAUhshAh lh&m hSAhA h&maJh/UhbRaJ h)aJ h_#aJ hAaJh/UhuwaJjj/heGxheGxEHUj }Y heGxUVjheGxUh_#heGx )*=>?@Woü摍uqmeaVjR}Y hUVhjhUhLh_#j@hT1hT1EHUj# Y hT1UVhAjhAUh&mhxj>hSAhAEHUjO hSAhAUV hSAhAjhSAhAUj;hT1hT1EHUj Y hT1UVhT1jhT1Uj8hT1hT1EHU    , - . / 0 1 Y Z w x { ڿꍂuꕙqme]UMhxmHsHhFmHsHhAmHsHh#_mHsHhMlh#_j MhhEHUjy}Y hUVhhLhShxjJhSAhxEHUjO hSAhxUV hSAhxjhSAhxUhT1mHsHh_#mHsHhxmHsHhMlmHsHjhUj FhhEHU !/!N!O!P!g!h!i!j!!!!!!!!!!!!Žysmd]Y]h-M h/UhOxh/Uh#_aJ h6aJ h&maJ hLaJjkTheGxheGxEHUaJjC}Y heGxUVaJjheGxUaJ heGxaJh/UhOxaJh/UhbRaJhxmHsHh6mHsHjQhVhAEHUjO hAUV hshAh?hAmHsHjhAU!!!)#G#G$$%%n''*a+y$xx7$8$H$a$gdx 7$8$H$gdx@ xx7$8$H$^@ `gd 7$8$H$gd= $ 7#a$gd[ cpxx^p`gd9~gd[ p#xxgd9~  gd[ 7$8$H$gd[ & Fgd[ !!" "F"S"`"a"b"c"v"w"x"y"z"""""""""""##*#+#,#<#=#>#?#@#E#q#µ쯫te_ h&maJjZh/UhGdEHUaJjQY h/UhGdUVaJh/UhVEHaJjh/UhVUaJ hMlaJh/Uh laJh l h laJjXhRhGdEHUjQY hGdUVhGdjhGdU hGdhGd hGdaJ h&<%aJh/UhVaJh/UhV5aJ$q################# $ $ $ $ $$$G$H$[$\$]$^$d$$$Ʒ}re\V h9aJh/UhOxaJjbh mh9EHUjKaWY h9UVh9jh9Uh/Uh{haJjR`h/UhVEHUaJjTPY h/UhVUVaJ h&<%aJj]h/UhVEHUaJjRPY h/UhVUVaJh/UhVEHaJjh/UhVUaJh/UhVaJh/UhFaJ $$$$$$$$$$$$$$$$$$ %%$%,%y%z%%%%%%%⺫՞}}l]h/UhVEHaJmHsH!jh/UhVUaJmHsHh#aJmHsHh/UhOxaJmHsHh-MaJmHsHh/UhVaJmHsHjeh/UhVEHUaJjVPY h/UhVUVaJh/UhVEHaJjh/UhVUaJh/UhVaJh/UhOxaJ h&maJ hLaJ%%%%%%%%%%!&3&A&B&E&S&^&_&`&&&&&&&&&'''Ǻ~x~rl~f]WQK h6aJ h9~aJ h&maJh/UhOxaJ h&<%aJ hFaJ haJ hV2aJh/UhFaJ h laJh/UhVaJh/UhOxaJmHsHh&maJmHsHh/Uh{haJmHsHh/UhVaJmHsH!jh/UhVUaJmHsH%jgh/UhV2EHUaJmHsH'j~Y h/UhV2UVaJmHsH'j'k'm'n'o''''''''''R(S(T(g(h(i(j((((((((((((ݽ季喇zkeaXR haJh/Uh 5aJh 5 h 5aJjsh<h fEHUaJjQY h fUVaJjoh<h fEHUaJjAQY h fUVaJjh<UaJ hVvaJ h faJh&mhjwkhhEHUj$}Y hUVhjhU h<aJjh-M0J&UaJh/UhVaJ ((((( ) ) ) )))@)A))))))))))))S*T*g*h*i*j*o*p***䚔}nh[jQY h'oUVaJ hxaJj'|h^Bh^BEHUaJjQY h^BUVaJjh^BUaJ h2aJ h^BaJjxh 5h 5EHUaJjѧ}Y h 5UVaJ h-MaJ haJjCuh 5h 5EHUaJjȧ}Y h 5UVaJjh 5UaJ h 5aJ hT1aJ h faJ!***********+ +!+1+2+3+4+5+6+?+^+_+a++++++++++++++¼ˤ˔˼vpjpdp^ h=aJ hFaJ h&<%aJ hkYaJh/UhFaJ h&maJjh/UhVEHUaJj\PY h/UhVUVaJh/UhVEHaJjh/UhVUaJ h 5aJh/Uhq &aJh/UhVaJ hpaJ h^BaJ hxaJjh^BUaJjh^Bh'oEHUaJ$++++,(,),<,=,>,?,@,A,L,c,g,y,,,,,,,,,,,,,,,,,,,ο۹smbh/UhVEHaJ hxaJjzh/UhVEHUaJj^PY h/UhVUVaJh/UhVEHaJjh/UhVUaJh/UhFaJ h@aJ hGdaJjh=h=EHUaJjPY h=UVaJjh=UaJ hFaJ h=aJh/UhVaJ h6aJ",,,,-P-Q-~---------------$.%.'.(.?.@.ӧ}ӧwqkewe[kNj%}Y hv+UVaJjhv+UaJ hLaJ hv+aJ h&maJ hV2aJjh/UhV2EHUaJjo~Y h/UhV2UVaJh/UhVEHaJh/UhVaJ h9~aJh9~aJmHsHh/UhVaJmHsH hxaJjh/UhVUaJjh/Uh6EHUaJj_PY h/UhVUVaJa+Q---i.....{// 0 00y & Fgd[ 7#gd[$ 7#xxa$gd__M$xx7$8$H$a$gdL$ 7#xx7$8$H$a$gdL 7$8$H$gd__M$xx7$8$H$a$gdv+ xx7$8$H$gdv+$xx7$8$H$a$gd9~ 7$8$H$gd# @.A.B.I.U.[.f.g.h.i.y..................Ȼ{qg]Oh/UhV6aJmHsHhLaJmHsHh&maJmHsHh=aJmHsHj˖hWvh6EHUj RY h~UVjh=UhV2hLh=hkYaJmHsHh1 aJmHsHh/UhVaJmHsH hv+aJ h&maJ hxaJ hLaJ hV2aJjhv+UaJjhv+hv+EHUaJ...//*/1/2/3/J/K/L/M/T/`/b/c/v/y/z/{/////////ǸԫylcVj}Y h__MUVaJh__MhVaJh/UhVaJmHsHh__MaJmHsHh&<%aJmHsHh&maJmHsHhV2aJmHsHhs=aJmHsHh/UhJaJmHsHjeh__Mh__MEHUaJj}Y h__MUVaJjh__MUaJ hV2aJ h__MaJhLh__MaJmHsHh/UhJaJ////00000 0 0 0 00=0>0H0I000S1T1f1g1t111111111¹}wnndn[nnh/UhFaJh/Uh"6aJh/Uh"aJ h9aJ h#aJ hV!aJh/UhQBaJhQB hQBaJ hB7aJ h/Uha~h/Uh1 5aJ ha~aJh/Uha~aJ h&maJ hLaJ h65aJ h__M5aJh/UhJ5aJjh__MUaJjh__Mh__MEHUaJ 00#2o233344h556c66|$ 7#xxa$gdzgdpx $xxa$gd+gd[  & F^gdpx & FgdEp$a$gd1 $xxa$gdi* 7$8$H$gd2$ 7#xx7$8$H$a$gdi* 7$8$H$gd[  & F^gd[ 1111122222!2"2#2A2B2U2V2W2X2l2m2n222222222ſι梚~xrl_Th/Uh"EHaJjh/Uh"UaJ h@aJ h&maJ h;aJjEhRh;EHUj7Y h;UVh~jh~Uhi*h;CJaJh@h2CJaJ h2aJ hFaJh/UhFaJh/Uh_aJ hB7aJh/Uh"aJh/Uh"aJmHnHuheGxaJmHnHu22222233333333m3n3o3333333ķwncnSDnj@h/Uh"EHUaJjjPY h/Uh"UVaJh/Uh"EHaJh/Uh"aJh/Uh"aJmHsHjh/Uh_EHUaJjiPY h/Uh_UVaJh/Uh_EHaJh/Uh_aJjh/Uh_UaJ h@aJh/Uh6e,aJjh/Uh"UaJj@h/Uh"EHUaJjhPY h/Uh"UVaJ333333333333333333344444r4444444˼سyskg\j{Y hpxUVhpxjhpxU hpxaJh/UhFaJ h/UhpxhEph h/Uh_h/UhaJ h"aJ h&maJ heGxaJh/Uh_aJjDhi*hi*EHUaJj)}Y hi*UVaJjhi*UaJ h1 aJ hi*aJh/Uh"aJh/Uh"J4445555555!5/50575@5f5g5h5u555555555555ฯ~s~cTj=h/UhpxEHUaJj{Y h/UhpxUVaJh/Uh"EHaJh/Uh"aJjh/Uh"UaJ h+aJh/Uh_aJ h"aJ haJh/Uh"Jhpxh"J hpx6aJjTh$hpxEHUj{Y hpxUV hpxaJhpxjhpxUj9h$hpxEHU55555556'6+6/60616A6B6C6D6E6F6L6O6P6^6a6b6c6x6666666666ʷ~ܮʮuܷejpPY h/Uh"UVaJh/UhFaJ haJjh/Uh"EHUaJjnPY h/Uh"UVaJh/Uh"EHaJh/Uh"aJjh/Uh"UaJ hddaJ hzaJ hpxaJ h"aJh/Uh_aJ h&maJ h;aJ h+aJh/UhJaJ#6666666 77777C7D7W7X7Y7Z7\7]7p7q7r7s7u7777777ڿڿڀzm^XMh/Uh"EHaJ hraJjh'hrEHUaJj{Y hrUVaJ h'aJjh'UaJjhKhKEHUaJjXY hKUVaJjhKUaJ hzaJh/UhFaJ hKaJ h"aJh/Uh_aJ h&maJh/Uh"aJjh/Uh"UaJjh/Uh"EHUaJ66777W89[:::f;<<1=2=3=>= & FgdVv $xxa$gd Hgdbr?$a$gd H$ 7#xxa$gd Hxxgdz$a$gd[ $xxa$gdzgd[$ 7#xxa$gdz77777777777888$8%8&8'8(8)848P8Q8R8U8V8W8x888ĻӚpӚga[ĻULh/UhFaJ hraJ hzaJ hLaJh/UhJaJjhrhrEHUaJjS{Y h/UhrUVaJh/Uh"EHaJh/Uh"aJh/Uhq &aJh/UhraJ h_aJh/Uh_aJ h&maJh/UhVaJjh/Uh"UaJjQhrhrEHUaJj{Y h/UhrUVaJ8888888888 999 9!9#9A9B9F9p9q9999999999999::4:5:6:7:8:ľ񾲾ــ񾢾sdjhh Hh HEHUaJjʡ}Y h HUVaJ h@aJjh Hh HEHUaJj]}Y h HUVaJjh HUaJ hi*aJjhO l0J&UaJ h HaJ hpaJ hraJh/Uh6aJ hO laJh/UhiaJh/UhFaJh/Uh"aJ h;aJ'8:9:V:Y:Z::::::::::::::::; ;;;;;;;; ;$;%;9;:;<;?;R;庱~xx~r~lf]h/UhJaJ h9aJ hLaJ h;aJ h xaJh/UhVaJjPh Hh HEHUaJj}Y h/Uh HUVaJh/Uh/UEHaJh/Uh/UaJjh/Uh/UUaJ hraJh/UhraJ h"aJh/Uh"aJh/Uh"J h&maJ h HaJ haJ$R;T;V;X;Z;[;`;e;r;|;;;;;;;;;;;;;;;;;;;;;;;ֺ֯֟džsdǀWjc~Y hddUVaJjVhddhddEHUaJjd~Y hddUVaJ hddaJjhddUaJj?h/UhrEHUaJj5{Y h/UhrUVaJh/Uh"EHaJjh/Uh"UaJ hraJh/UhFaJh/Uh"aJ h HaJ hLaJ h9aJh/UhJaJ h xaJ;;;;;<<0<1<H<I<J<K<O<P<Q<h<i<j<k<l<m<<<<<<<<<<<<<<Ȼȟ݊΄zm^zX h&maJj>h Hh HEHUaJj}Y h HUVaJjh HUaJ h HaJ hbr?aJjGhddhddEHUaJja~Y hddUVaJjZhddhddEHUaJjb~Y hddUVaJ hddaJ hraJh/Uh-{aJh/Uh"aJjhddUaJj]hddhddEHUaJ"<<==0=1=2=3=>=?=]=u=|=~====>> >>>X>i>z>>>>>>>???'?+?Q?{????ɻ|smmg hhT*aJ hykaJhkYhoaJhohoaJ hoaJhkYhZHaJhkYhkYaJhkYhFaJ hFaJ hIaJhkYhaJh/Uh05aJmH sH  h/Uh?Ih/UheaJ hR}aJ h"aJh/UhFaJh/Uh"aJh/Uh6aJ(>=?=???z@@`AA=BB]CdDygd@ W<^`Wgd~ W<^`WgdJ&$[$\$a$gdJ&gd~ 7$8$H$gd~ W<^`Wgd[ 7$8$H$gdkY $ & Fa$gd[????????@@A@N@O@X@Y@w@x@y@@@@@@@@@@@@@@@@@AAA AttiiihKphCJaJ$hKphCJaJmHnHsHtHhKpCJaJmHnHsHtH$hKphKpCJaJmHnHsHtHhKphCJaJh"ShCJaJhKpCJaJh"Sh0jCJaJhT h/5mH sH hT h|5mH sH hkYhkY5mH sH hkYhkYaJ% A"A(A)A*A,A-A.A]A`AAAAAAAAAAAAABB B B;B=BBBBBBBBBBBCCCC3C8C?@Agd~$gdO l$$ V[$\$^`Va$gdñֱױرٱ,/01234679:<=@AxhKphfBCJaJmH sH jhVrUhVrhO lhO lmHsHhT*hO lmHsHh|RCJaJhO lCJaJh"ShO lCJaJh|RmHsHjhO lUmHsH!jhT*hO lEHUmHsHj){Y hO lUVmHsHhO lmHsHB 0&P :p@. A!"#$%0 7#Dd hb  c $A? ?3"`?2[~~J 7nD`![~~J 7n@e |uxRJA=3yo [GZE0&HXXZ l VD{g'>g޹3sF H̀[zFWRЖ Z-eLYH[ON` 9z'<XVXw~jMi`RI_ۍ7&zo^]zj3NNӼhn|Vx<=J1ƵlܔNIguuZ ~8Vg+ޮO2nяwŒ > pyFR<ǚ''1+G34ѽ}Rpԇx~/+q2 28y0ݱ!\o& ř*v`)o t#Cb\O#Dd ,hD  3 A?"?2drL& X@`!8rL& X@$|xcdd``> $X bbd12,(ㆫar`z(Wcgb Aπ7$# !lo&A $37X/\!(?71XkX P.P56zh vA%/) %L؁r {@a򎑉I)$5ANE.-vLDd DD  3 A?"?2Z~MWFJ/˅[`!SZ~MWFJ/˅ ;!xcdd`` $X bbd12,(ㆫa:Y( TA?df6aP5< %! `35J ,L ! ~ Ay /6~. _˧IMcF\ @Z *A~A3 Eܤ\s> 0d$s{`a.6R 1^ \@r\1@D wLLJ% @gPdk[> ݮ t/ dDd h0  # A28 G#Ips`!  G#Ips@|xQMA}٬f+Qt\~AN,U0 9->gYaSVW:9FwVՉsG?qaoWфޏG%p(MҺҜ{BܓRnCqόqh'~RyϜ$:f;q[_qnM ˅Z޺:y/Ng7L{NP˕\3>uFHDT-!~?m̶nnOY.2?MwF1`/Os2xĂ8f1g/Yq#/ZMjc\e?v&CEU6Ȭe(2^D{XgDd L|b  c $A? ?3"`?2wHh-T.o `!wHh-T.o` 0Sxcdd``vdd``baV dR`1FYzP1n:lB@q56~) @ k;/`c`熪aM,,He`HP&,e`abM-VK-WMcxsG VpZ~]"̀NHq-` jP g5`hTIF >F20il:1Z 27)?(W윏B8, ` %>ݿ dB<@|J. Q.pq%wLLJ% xaPdh*Yf.kHDd hD  3 A?"?2]oE`v? `!]oE`v?@ |RxR1KP%mR0dqC"BDBKcN Nκw898R ƻg" サ{w}{ 8Ua "%^5R|}4Z]d>RcUpl l?vϫa/ d1Uv::/dKQ}(~ؽ4Q9W2vJv{+ϜDW:Egž 7=X*j7sc]|4Aї&]ğۊó~WϾ/6lćl.{6Z`< M};߫ՊDd D  3 A?"?2CDGymбK`!DGymб:@@x=O;nP](P¤p)|(0J '@2Rs )e fPovv=A (-(FM/h}NկFIxXi] Mu@<{e1QNnYޒx 4~$wWtC'ezAzcv.a(<|Tm2>dYNba?=ꖛݟ57Dd   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]_`abcdehklmpnoqrstuwvxzy{|}~Root Entry FjData ^AWordDocumentDObjectPool0_1498476629F0@Ole CompObjfObjInfo  #&+0345678;>?BEFILMNOPSVY^abehknopqrsvyz{|} FMicrosoft Equation 3.0 DS Equation Equation.39qHo\ p 0 =wDx 0 [] FMicrosoft Equation 3.0 DS EqEquation Native d_1498462780 F@@Ole CompObj fuation Equation.39q8t p 0 FMicrosoft Equation 3.0 DS Equation Equation.39qfg w>0ObjInfo Equation Native  6_1498462781r"F@@Ole  CompObj fObjInfoEquation Native 1_1501501025F@@Ole CompObjiObjInfoEquation Native  FMathType 6.0 Equation MathType EFEquation.DSMT49q$(T ( DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  x 0_1498988842T|F@@Ole CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39qj=@e\ D ' (x 0 )<0 FMicrosoft Equation 3.0 DS EqEquation Native Y_1498462785JF@@Ole CompObj fuation Equation.39q/0b x 0 =F(x) FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo!!Equation Native "K_1498462782'$F@@Ole $CompObj#%%fObjInfo&'Equation Native ()_1498462783)F@@^ 8t x FMicrosoft Equation 3.0 DS Equation Equation.39q^r x 0 FMathType 6.0 Equation MathTyOle )CompObj(**fObjInfo+,Equation Native -6_1501388447.F@@Ole .CompObj-//iObjInfo01pe EFEquation.DSMT49qSÈ\aT a DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  p 0 x 0 ==wDF(x)[]F(x)==wF(x)DEquation Native 2_14984627873F@@Ole 9CompObj24:fF(x)[] FMicrosoft Equation 3.0 DS Equation Equation.39qtt 'maks x wF(x)DF(x)[]"wxObjInfo5<Equation Native =_149898239758F@@Ole @ FMicrosoft Equation 3.0 DS Equation Equation.39qj@e\ F * (x)=F(x)DF(x)[]=p o x 0 wCompObj79AfObjInfo:CEquation Native D_1501388804!=F@@Ole GCompObj<>HiObjInfo?JEquation Native Kv FMathType 6.0 Equation MathType EFEquation.DSMT49qSZ$0T 0 DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  w "F * (x)"x i ==w i ,""i FMicrosoft Equation 3.0 DS Equation Equation.39qM?c|_ w"F * (x)"x i_1501157003BF@@Ole QCompObjACRfObjInfoDTEquation Native Ui_1501157030@GF@@Ole WCompObjFHXf FMicrosoft Equation 3.0 DS Equation Equation.39qh?c_ w i FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoIZEquation Native [6_14984627901OLF@POle \CompObjKM]fObjInfoN_Equation Native `_1498462791QFPPž{" x 0 =f(x 1 ,x 2 )=x 114 x 214 FMicrosoft Equation 3.0 DS Equation Equation.39qI p 0 =w(Ole cCompObjPRdfObjInfoSfEquation Native gea"bx 0 ) FMicrosoft Equation 3.0 DS Equation Equation.39qn-܉ F * (x)=(a"bx 114 x 214 )x 114_1498462792VFPPOle iCompObjUWjfObjInfoXlEquation Native m_1498462794[FPPOle tCompObjZ\uf x 214 =ax 114 x 214 "bx 112 x 212 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo]wEquation Native xh_1501405193`FPPOle ~L. 'maks x 1 .x 2  w(ax 114 x 214 "bx 112 x 212 )"w 1 x 1 "w 2 x 2 FMathType 6.0 Equation MathTyCompObj_aiObjInfobEquation Native _1339392375eFPPpe EFEquation.DSMT49qS$hT h DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  w "F * (x)"x 1 ==w( a4x 1"- 34 x 2 14 "- b2x 1"- 12 x 2 12 )== w4x 1"- 34 x 2 14 (a"-2bx 1 14 x 2 14 )==w 1 w "F * (x)"x 2 ==w( a4x 1 14 x 2"- 34 "- b2x 1 12 x 2"- 12 )== w4x 1 14 x 2"- 34 (a"-2bx 1 14 x 2 14 )==w 2 FMicrosoft Equation 3.0 DS Equation Equation.39qf;4 x 2 x 1 =w 1 w 2Ole CompObjdffObjInfogEquation Native  FMathType 6.0 Equation MathType EFEquation.DSMT49q$hT h DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_1501498492]jFPPOle CompObjikiObjInfolEquation Native _1501498514oFPPOle CompObjnpi_A  x 2 FMathType 6.0 Equation MathType EFEquation.DSMT49qlT  DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_EObjInfoqEquation Native _1339392411c tF`.`.Ole _A  x 1 FMicrosoft Equation 3.0 DS Equation Equation.39q]x x 2 =w 1 w 2 x 1CompObjsufObjInfovEquation Native y_1501498403yFP`.Ole CompObjxziObjInfo{Equation Native 7 FMathType 6.0 Equation MathType EFEquation.DSMT49ql6T 6 DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   w4x 1"- 34  w 1 14 w 2 14 x 1 14 (a"-2bx 1 12  w 1 14 w 2 14 )==w 1 _1501406290;~F`.`.Ole CompObj}iObjInfo FMathType 6.0 Equation MathType EFEquation.DSMT49qS$aT a DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  x 1* =Equation Native *_1501406329F`.`.Ole CompObji= a 2 w 2 w 2 14 4w 1 12 (2w 1 12 w 2 12 ++bw) 2 FMathType 6.0 Equation MathType EFEquation.DSMT49qObjInfoEquation Native *_1339404566F`.pUOle S$2T 2 DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  x 2* == a 2 w 2 w 1 14 4w 2 12 (2w 1 12 w 2 12 ++bw) 2 FMicrosoft Equation 3.0 DS Equation Equation.39q™K| x 0* =aw2(2w 112 wCompObjfObjInfoEquation Native _1501404995NFpUpU 212 +bw) FMathType 6.0 Equation MathType EFEquation.DSMT49qSï$/T / DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_EOle CompObjiObjInfoEquation Native _A  p * == a 2 w 2 4(2w 1 12 w 2 12 ++bw)  " FMicrosoft Equation 3.0 DS Equation Equation.39q_1498546120FpUpUOle CompObjfObjInfo/0 c(x 0 ,w) FMicrosoft Equation 3.0 DS Equation Equation.39qHgt 'maks xEquation Native K_1498546111FpUpUOle CompObjfObjInfoEquation Native 1_1498462802YFpUpUOle   !$%&'*-./012347:;<?BEHIJKLORSTUVY\]^adefilmnqtux{| 0  p 0 x 0 "c(x 0 ,w)='maks x 0  wD(x 0 )x 0 "c(x 0 ,w) FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjfObjInfoEquation Native _1498462804FpUpUc< F * (x)=D(x 0 )x 0 =y FMicrosoft Equation 3.0 DS Equation Equation.39q/h x 0 =g(y)Ole  CompObj fObjInfo Equation Native K_14988987636FpUpUOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39qu\ 'maks y wy"cw,g(y)[]='maks y wy"c * (y,wEquation Native  _1498462806FpUpUOle CompObjf), FMicrosoft Equation 3.0 DS Equation Equation.39q/p c * (y,w)ObjInfoEquation Native K_1501476342hFpUpUOle CompObj iObjInfo"Equation Native #8_1501406500FpUpU FMathType 6.0 Equation MathType EFEquation.DSMT49qS\*T * DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  w== "c * (y,w)"yOle (CompObj)iObjInfo+Equation Native ,  FMathType 6.0 Equation MathType EFEquation.DSMT49qS\hT h DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  c(x 0 ,w)==min x wxsubjecttox 1 14 x 2 14 ==x 0. FMicrosoft Equation 3.0 DS Equation Equation.39q_1498544705FpUpUOle 5CompObj6fObjInfo88t MRTS="f(x 1 ,x 2 )"x 1 f(x 1 ,x 2 )"x 2 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 9_1498544791FpUpUOle =CompObj>fObjInfo@Equation Native AQ_1501407176FpUpUOle C5@ELr w 1 w 2 FMathType 6.0 Equation MathType EFEquation.DSMT49qSW$5T 5 DSMT6WinAllBasicCodePagesCompObjDiObjInfoFEquation Native Gs_1501407185F||Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  MRTS== x 2 x 1 == w 1 w 2 FMathType 6.0 Equation MathType EFEquation.DSMT49qOle MCompObjNiObjInfoPEquation Native QMS1$'T ' DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  x 2 == w 1 x 1 w 2_1498545693F||Ole WCompObjXfObjInfoZ FMicrosoft Equation 3.0 DS Equation Equation.39q8t x 1 (w 1 ,w 2 ,x 0 )=w 1"12 w 212 x 02Equation Native [_1498545940F||Ole _CompObj`f FMicrosoft Equation 3.0 DS Equation Equation.39q<Lr x 2 (w 1 ,w 2 ,x 0 )=w 112 w 2"12 x 02ObjInfobEquation Native c_1498462812F||Ole ge     + !#"$%&')(*,.N-/0312546798:;<>=@?BACDEFHGIKJLMOPQRSTUWVYX[Z\^]`_abcfghijklmnopqrstuvwxyz{|}~hD  3 A?"?2`Ѡr -V{<&`!4Ѡr -V{@2|xPNA}3AÂc:B8ʼn $uW[2bEf9dvf߾y3Pyjg*RbEQ39.ҁ.Mwp[>Kf/Bfij8slnMQUCO8 n ~KV]gޅ<]֚ohs'0n.!Lwy6m2_LDwXFsw04{n4 u,O7gdދy& )nD^V¼%r7R>v7EEMڈFL=C.b ) O ! %dݐ ^@OŒh&Ԩ-LЧ7 rCХ1a ɻDd | b  c $A? ?3"`? 2d/T$m_@`!8/T$m_`h{@2xcdd``g 2 Ĝ@>e12,(ㆫab`I3H1g`YKX(7$# loe&,eBܤ\|bxsG VpZF0m/ P.P56giyD&6d$s̍ k 0A&¤ nhRB2sSRsp @ ~[,2#Fƅ`~/@|78wkXQ |vLPw?dvW>4NL'?<2 ktpkAA;i)p٫?`PCQY hz6#4>̵˂Gg8Xk` Pi. @nasv0wLLJ% {AyC - g`AXDd 00  # A 2Re\=s .`!&e\=s  HxUMlQyH&6k'1xj=`x!kݤ@X$&^Ǟ썛=ē'zb<1{D]`HD}{o7̛E  o@%v-q[$:h fc^@"[oi_ᘭ=d kG9IdmFjTD|)%diW&YXMs{ƗuV\Ӫ|@<ܙp}.>GCCoJmWG-Obxd_~!D,ľoQF,;1z,41K=O҃Vd<0he1hXr'"o=?<ݨӂjUoLWNTJxSz8 ]}[Mؾ0횅š:b3cVvxŔavtrwX4r3x5쯮?y1g]ic}] 3yU } $X bbd12,(ㆫar`:(Wcgb qРg@ UXRY7PL ZZ@F'iXuri#z` fjT@~0WrI>1@.;F&&\U w2uX0tA4<r;.Ff~cJUDd p0D   3 A ?"?2Ӊ I6$ $`!Ӊ I6$ mxSKQ7u%!x(C C1g=ێNX'O.'9{|(uY) (cV/jie WDd @hD   3 A ?"?2|h=)u&`!|h=)u͢ @|axQ=KP=;-;C *TJ]Nn Q1Bp?ݽCJ'GQSxk^}ޓsBH)YOJaO{j5^0{B\qJ8׭Z{J$H֍Sdz;}g^}f^y֍:.HNc?-x;oSd-Z_At>zKZ3VOHgCXnNZc?vRBpןO0^߁ZJjsD}2qCO\bfi"P |(f;.*27pg LNʺ2˸) zJ_Dd D   3 A ?"?2_P_)`!_P_`hx)t;ixTAkQMmILL6=Z0 ^*jbU[h!ࡠ x]P Tx /DD/gfU<_xv{oǂscfpheEXV9ұ.A@C9iy^ܪP\ i2޼ ֻ!Io<4hiΦW)dŝO+X\&mws%ŕQ,}U\{.o$򭛽{w/ڷʫaM=mA߯] urxv|@׏c|FOK];sI3O[k:DA q>Q~? q<1NNӉo~?s}pGt#Z }v0)Hn!oT?q  ΰD]35SADd D   3 A ?"?2bRs14^VAF7m,`!}bRs14^VAF7< $eKxT=hQ7$&z""h@+ kѤH6pm$XPա[9a+2-D+A x̾&owy cfp"RZR:k]-5Ca8؄c\n3jSIoLtX2ina#(Ϊ%FHcTTR݅z{+}?f8mt)6+oS~ǽx pVǣkI,3B* 9M)/ƣ˿H_rΛWRWiwLƧ"RsgeEl'In*Ԟ7Ȟ^ɆqN2vgȬw QƝ sr]}ʗp.L+JN.۽ 4dpM`Ru/Ro c:nt-8֨|wr;scU\%EUyXm B<18dz[~)Dd H0  # A2\OAI$y.e$.8/`!0OAI$y.e$.@@%@ 9PVxXMlE~3v;NiTDu@Q$&Q+.q֐?!qА F"C%$T(E₸Pm/$ٵqtgg̼}3 *|E31jvyW[+ZwQJ茏My(/a  /,jb*E4P1Fj}#]1*,?(}Fe?WJY[H?6[PwǨk!)KT;u}\+u}Sױ:9wFlWQdۥQ#ٯa)Ql3Ir+Irڥb?tqgʼn<>‰ON4'>-(uB '>9MӜb1<>B .$>b`i rp?y=2Dtl`Oj( Í+up6qK3&vj޽ai6+Ffiu*)@v0NLrӔmt6VubM}}Y 8 #>ո03"<#gwx9@ fO9݄yo͐{γD+}~c43qs̶O'GBkނ+cl&RoQl?ߌW&súG6n`PX"ⶇrfvW&J妑Jc #ĒRGYz#gXdB=L}uZwN%\`]}V 1B Wu>Ig}Z}ƻFbnѸ?ړ"ۂ1.SspPDo/kǫ{: }pyDd b  c $A? ?3"`?2,m UBI6`!,m UBI`PqxRJA};wQs9"A;ةIaa' 9#$p^* 6;,RK$l" 2̼Uֆ ᕥE4(MSm9~.ULĩ}Sc5 '&[Q99 l!R,T [jĵ-d)RMQߩG*/㡎w8]u]Z8HO}}qPcZ!6XyuJI_R|GOE$:û_V82 =_xUD ## hq~_QoDd h6  3 A?2<vQ+ZR }9`!vQ+ZR }@|xQMka~MӚMm~kAŶf`O\dKrsy|)obkӮ㨯8 2+p݇ф>͢4IvzHs _pO~KU sdƏfSD;р#|xM'A4ۑs/no"OX.Ԛ-GQv:;aStJ_iI%7Dz zTo9x8YWimmdu7p?\f|rl0-Od|咻?ϵ2b e(/^Jfō"hQ476Np 8gf ulYqo rx(2^0}Dd 8b  c $A? ?3"`?2gQpw]l>`!gQpw]lv`v PixRKP6-jA`V::VcVb&389OgS:8KX0޽ }5!bhd+S$Vlˏ ov")́cee52|Svu\.@j!XfjDmbMY0÷i i>8s+Qp8k9<}HGEGoQ|Ɛ\Lhԑ(Jle l/Hk-Dd  b  c $A? ?3"`?2X9^L+:t4CA`!,9^L+:t4 @ xVMhSA}/5i4iRCĢR$4C؀7CZH4EEz`B/J/z^y$G⡊h X7;;7f@lw6H㫫R:¶Ny+~0Yn +GMְK+ 4!wHH)%fR32s0gV0)na!eآyAteQmjHc˲?aoWs˰[ ]}X5cr%8.绉]nd,އ RKqgZ)|V&sEx{^g/˽K聋̰^c>ўuq"P:?EB:퇁$i!.kdM4Ǽ+u [lC:8=nisn#/C[Zf8nfCxA ׾Ҭ6֋dܑd\ G݀Dd ` 0  # A2^͙䊳jf2лQF`!^͙䊳jf2л @ xV_HSQ9NwgnE)YA3],zse!9)\78sвd=UDOA=!^C=FD,37e pF&YKY>GCx^N#I`Xv> f@#~c4́ 4 9lQ#-e?(%m#ixFy}5ap3 l; ^6&JP;?,<:_<5 F1x%Ma͔:s9tRkf醝@ obPl|y LQǤO1*| v ͆Z!'{Cw0qx6AݙVukJ/oS;CίQ*6zO6pSvMn⭣۪)L_׼baos6C\`Kn0TǨUX{-1驸d*!U]lmU&嶇QeuݲX,GeO'V6f;eڮm;#U˩WZ.DZthA3n D.8Jq*x1=46?j:dt*n&'/,~5562fzch罐8zTb`-7JrJ W3)J %bEM c j" i,Vxr?l =B5,C ȖIl#Vm`ۉm ֊dEl(KfSz0a~([f(]ЅfzڹH>$n&u_p,5#2ݸZ eC}Dd 8b  c $A? ?3"`?2gQpw]lJ`!gQpw]lv`v PixRKP6-jA`V::VcVb&389OgS:8KX0޽ }5!bhd+S$Vlˏ ov")́cee52|Svu\.@j!XfjDmbMY0÷i i>8s+Qp8k9<}HGEGoQ|Ɛ\Lhԑ(Jle l/Hk-Dd ` 0  # A2vVE$juNM`!vVE$ju @ xVkSA}/m^&iGLjɣJ/ib$Y(Mmړ)B޼E<*C/?ATh@h8#MJv˛ݙf.7XWT2$1^.tZ:GA qyRw38kG=|_A%>+M.zԭ70Br'؂FR J(ee9uϤem5ap'Z9Oi"M 9ILcJH 8Q^3l*k'ljS/|kdKefwv[adȽA"Qz]30QD ( +&T lu:>qcx 'Ѫ[.s%P Boʷ!UzU*l}bl]ߔbS7={'oj0fbZF64=z"u şjKeYů7"VmWX Rw0-FbqTg>Ymp29>g`jMir^jNMic]8DZt]ХhAn X.MQlJn< \P"\$Oң-c85f(~a1A D06=9fo- tGK>dd(F+.-'QyZ:%At&"cE@`SQN秱{CL\'f\ʃ0m@LL\0/nvȅiAvECѐ3JF da݌n4nG(ʃ.B3S#,b,=X< xo9-p\۲KkX+;v N5eY\7u܌/T%qQ^~yԑQbyіxϫi mziHϷ+30kHGdEz=q_M{P7܁ƑlڒP ɰg]w;9qzi~q䔒R(RyϯV/`G Kt* yPײƐr< n`LM#/bFҙ/eTZ8&JX۱ۂߘJ܌[ب=iz48V-<|XZNrPbAh("T+!p>=},F'&[,daI7Ů'x;1PFmp+nm8Z(uqvxDsRt!bɤ'2Kyo=-&.|I XjI)[%nH[ .ge3 oQy9`=?'r^Iʱ")Q/$r.g՟V5?d2 8VhpcV5(PY3?fōYG; Shcl5XDzu59MFhOg$S[_j;Fh _=u_]kn$픴o R$Ǚ z4B_|TVrt :h؋+WVNDd Hh0  # A2tcW nOj*qX`!itcW nOj*r@@"|7xcdd``dd``baV dR`1FYzP1n:&&V!?P 0nĒʂTݿ%`R&br<?b¢i,@u@@ڈU?/@|J_3)`{ >b.#?A ;+ě p1Kr%6P rcd74n<121)W2XC nc!p'f~]zw7Dd b  c $A? ?3"`?2!sF#%vk_ݧ]Z`!U!sF#%vk_ݧ``/xt#xTK[Q??4*Oi[UPplm}*FxҾA:إ8SqVptpnKC9{ ^sw>H @w:I!“jDwx0zIYiji@*@ 1puY_+}+(ĵE{{W+ ?+ɟP/m?bb>-i|G|տ|x<]A[|Ɵ-ic ﭴ1/5Fv*h\1ǖ bkxcxT9?V~X7}ܕʯS9Gq/5^|bx|SQ-fo>@|!E3=`Ψ|#g(TZw$ץhp :'M$_'m<6I[T1u⾕8.R%6w6n4k#0Ec{3;I r-L`'MHunYLTUYd>4( we&)>ǤQkWc *yINŪIjVܪ۵#l Z5f0(:G_ѻb=z'$v a|eK`\reީcY5BW:uw5)hxL1Jy *߼ Te~oޟ]&XbUB+a&=p{W\{ێN܉Dc )g!\i4-}'ЉYY9[u op\=Dd hD ! 3 A ?"? 2mldw R``!ymldw Rr`@ |GxQKP5m1tqRD΢mF?XN;(ũ`{M"(p/w߻S!RfQn+)JX[j1EC-UUM'X YC?:JN"݋0xGAqzx48n߶5,K%&L"W>EH33=ͼ]goes;:<_ݹh^ITmà`ȸq1gpV;z!"i fMcEvDd H6 " 3 A!?!2mFmDZXi\/oK HIb`!AFmDZXi\/oK H@ L xT1kAfvۻq!$t!!ALz\TtM, *]'X*IcB+{ov==87f(`Ig@Oi~_^Pl*ř/imޣ>1`˙MsQ]W>G lqPMꂍo5|zz|15.O2l(/ԕv]㛯p>=ryod!yPwN1IV<M$hS 9NZxvfY1C:uQ øF1r jZ1QǿjDo^rFFF&^3d Ζԓ?5{RkI5+H^DoySʷ=`y-Z-ֻ̐R KOQn~SiezR3 {{R`ܲ!--kXW1"HgubLq/.~f{pmzKy[7}!zd'ȯ yS1t6oRB1*X\dGm|,ׄݜn}DnYmMXy֤Q"22Ұ7iˮX8]ъDw|5"BΛXO_o>[x% 9]͢jFt+±25iQ)>Yv\~`U#]*-z@xrX=9S4LJ8!}-h1|{oh~oDgccF/۾sָq9nòsNhٵc%kAOv3ѨM0lJgB )HnO bSf6-^2aRi%iӣŅ1ӈ\P*ͧh7yV'#j0p*I|:rx{ BXXuu< ,jznC~Syk|9J B+yfgꂷ,G I%6ed`URPB H]gFw#)bm_kS]ԀE M]>G^ RPtM͒'^I:ћ5C~7\^Dd Ob & c $A%? ?3"`?%2Z?D3r<@F ;6:p`!.?D3r<@F ;@ h0, xSK#A~ovv.S r >e"?9-,:XYZX]!6wXZXA+ f' \ o|ovB 8LzÑ@#FCeG0qM| )CqGs\][,TH xC3L[H+G4t¹q+msVi=bqzz_i/EdRWX*W33r&RG{z2c_j/\S(Y{(>`i{gma-Q꼔5܎kxWS|ԟjcᰏAct-8?q_#'#h~O^#YGCy췪@kjwagD^G&ZO@߯*}urӹB2"yJineor i $ޔ=&|2f*Jc9O'ե/ƒBP|euX>@L(<$uG}; jz7F\=Dd |b ' c $A&? ?3"`?&2A_N KkcJs`![A_N Kk``0P)xQJP=w6>6pYZ)/hihv%m-JWgn03̙5w`vc|H4uǬ\Id2`~k~ k Q-=O&XdP!l Jez+sĒ_VD 觧e1Ee jyx(nqxnW>aU{ɠ sm.}2 ݵf߀Gif$:c&͡.d0gowNCN"'v-tnRrBߌSQzћmAp lnQJ8v,#7nV⵮b^p n"44T,99O!2vLH+eE'Vr}U^-Q /s/~DՉDLmʸ ku ZFaٵJ%.J>R)̐.hK'2H.+V ;_k2yhZ^㎥/ śkylN\ZɯgN?bZĝN{! ,`Fykǝv)-eMecٸßeHH,dJ4QH3w? }FzBO aDCp~Ɵ-%4\+}G4ΤIƂ.m,@I`$Ʊ"y,"" ڭt)tQӭNP٨`DM ̽GHy,T&~) 9Eqa/WT:5 ?eJA HaQ.gwE!rc+Cf|$VX C{bҞ}!Ql1O|fc^RVۗQzPt7qy< 6iڬ3ϻLaGƐ{bԄql|8dӺۿgWlWYEya_Qt$ひ"O|-e jUwdϜ$ WNlg&4)]YrQ/cEr r2J]VWKJ9ٸndKFBT)ACdVbPHc~UtXJSKz Ǡ d͓p-Hr7L5sh)}*M_!!!I ؠ˼Atƽ8ij%B~_9kÎӉ SmPfk @ A:`Mpx rvǨq`g别XMٯ8ͫDd 0b * c $A)? ?3"`?)2>/rތ_?)+{yg..n 4齣'M޵W?(нC?^KЏzg˛˦ d?0 1AO sޱ`yt8A%ZP-)'Dd 0b + c $A*? ?3"`?*2C"XI^v_`!"CompObjhfObjInfojEquation Native k_1498477072F|| FMicrosoft Equation 3.0 DS Equation Equation.39qphe< c(w 1 ,w 2 ,x 0 )=2w 112 w 212 (x 0 ) 2Ole oCompObjpfObjInforEquation Native s FMicrosoft Equation 3.0 DS Equation Equation.39q@e\ y=x 0 (a"bx 0 )=ax 0 "bx 02 FMicrosoft Equation 3.0 DS Eq_1498462814F||Ole vCompObjwfObjInfoyuation Equation.39qpfhe< bx 0 () 2 "ax 0 +y=0 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native z_1498462815F||Ole }CompObj~fObjInfoEquation Native _1501476207F||Ole pdT| x 0 =a a 2 "4by  2b FMathType 6.0 Equation MathType EFEquation.DSMT49qS\*T * DSMT6WinAllBasicCodePagesCompObjiObjInfoEquation Native _1501407525F||Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  c * (y,w 1 ,w 2 )==2w 1 12 w 2 12 ( a a 2 "-4by  2b) 2Ole CompObjiObjInfoEquation Native  FMathType 6.0 Equation MathType EFEquation.DSMT49qS\4T 4 DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  maks y wy"-2w 1 12 w 2 12 ( a a 2 "-4by  2b) 2 FMicrosoft Equation 3.0 DS Equation Equation.39q_1498548483F||Ole CompObjfObjInfoEquation Native 4_1501404816F||Ole CompObjit "c"y=2w 112 w 212 ab a 2 "4by  "2w 112 w 212 b=w FMathType 6.0 Equation MathType EFEquation.DSMT49qObjInfoEquation Native B_1501404858F|Ole S&$7T 7 DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  y== a 2 4 4ww 1 12 w 2 12 ++bw 2 2w 1 12 w 2 12 ++bw() 2 , FMathType 6.0 Equation MathType EFEquation.DSMT49qS?$'T ' DSMT6WinAllBasicCodePagesCompObjiObjInfoEquation Native [_1501499959mFTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  p * ==w a 2 4 4ww 1 12 w 2 12 ++bw 2 2w 1 12 w 2 12 ++bw() 2 "-2w 1 12 w 2 12  a 2 w 2 4(2w 1 12 w 2 12 ++bw) 2 == a 2 w 2 4(2w 1 12 w 2 12 ++bw)  " FMathType 6.0 Equation MathType EFEquation.DSMT49ql/T / DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_EOle CompObjiObjInfoEquation Native _A  y== "p * "w== a 2 4 2w(2w 1 12 w 2 12 ++bw)"-bw 2 (2w 1 12 w 2 12 ++bw) 2 == a 2 4 4ww 1 12 w 2 12 ++bw 2 (2w 1 12 w 2 12 ++bw) 2 . FMicrosoft Equation 3.0 DS Equation Equation.39q_1498462824 FOle CompObj  fObjInfo 8E| " * "w=p 0* x 0* w=w(a"bx 0* )x 0* w=ax 0* "b(x 0* ) 2 FMicrosoft Equation 3.0 DS EqEquation Native 5_1498462825FOle CompObjfuation Equation.39q2Œt b(x 0* ) 2 "ax 0* +" * "w=0 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoEquation Native _1498462826 +FOle CompObjfObjInfoEquation Native ;_1501407785FR x 0* FMathType 6.0 Equation MathType EFEquation.DSMT49qSÙ$1T 1 DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APOle CompObjiObjInfoEquation Native   !$'()*-2569<=>?@CFGHILOPQRSTUX[\]^_`abcfijklmnopqrstuvwz}~G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  x 0* == a a 2 "-4b "p * "w  2b== a a 2 "-a 2 b 4ww 1 12 w 2 12 ++bw 2 (2w 1 12 w 2 12 ++bw) 2 2b== aw2(2w 1 12 w 2 12 ++bw) FMicrosoft Equation 3.0 DS Equation Equation.39q_1501239980&FOle CompObjfObjInfo Fb^ w 1 FMicrosoft Equation 3.0 DS Equation Equation.39qIb<^ w 2Equation Native  6_1501240000EX#FOle  CompObj"$ fObjInfo% Equation Native 6_1501239962(FOle CompObj')fObjInfo*Equation Native H_14984628300-F FMicrosoft Equation 3.0 DS Equation Equation.39q,`^ (w,w 1 ,w 2 )e"wF(x)DF(x)[]"w 1 x 1 "w 2 x 2 "w 1 ,w 2 ,w FMicrosoft Equation 3.0 DS Equation Equation.39q^T (w,w 1 ,w 2 )e"wF * (x)"w 1 x 1 "w 2Ole CompObj,.fObjInfo/Equation Native 3 x 2 "w 1 ,w 2 ,w FMicrosoft Equation 3.0 DS Equation Equation.39q^he< F * (x)=maxy:wyd"w 1 x_14984628322FOle "CompObj13#fObjInfo4%Equation Native &_14989840897FʌOle +CompObj68,f 1 +w 2 x 2 +(w,w 1 ,w 2 ){} FMicrosoft Equation 3.0 DS Equation Equation.39qj @e\ wObjInfo9.Equation Native /)_1501240220<FʌʌOle 0 FMicrosoft Equation 3.0 DS Equation Equation.39q{X,.) W 1 =w 1 w,W 2 =w 2 wCompObj;=1fObjInfo>3Equation Native 4_1501240347:DAFʌʌOle 7CompObj@B8fObjInfoC:Equation Native ;E FMicrosoft Equation 3.0 DS Equation Equation.39q),) F * (x)=maxy:yd"W 1 x 1 +W 2 x 2 +(1,W 1 ,W 2 ){},"W 1 ,W 2 FMicrosoft Equation 3.0 DS Equation Equation.39q0,.) F * (x)='min W 1 ,W 2  W 1 x 1 +W 2 _1501240403FFʌʌOle ACompObjEGBfObjInfoHDEquation Native E_1501405789KFʌʌOle JCompObjJLKix 2 +(1,W 1 ,W 2 ) FMathType 6.0 Equation MathType EFEquation.DSMT49qS\*T * DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APObjInfoMMEquation Native N_1501405642^SPFʌʌOle VG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  p(1,W 1 ,W 2 )== a 2 4(2W 1 12 W 2 12 ++b)  FMathType 6.0 Equation MathTyCompObjOQWiObjInfoRYEquation Native Zu_1501405841IqUFʌʌpe EFEquation.DSMT49qSY$hT h DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  F * (x)==min W 1 ,W 2  W 1 x 1 ++W 2 x 2 ++ a 2 4(2W 1 12 W 2 12 ++b)  FMathType 6.0 Equation MathType EFEquation.DSMT49qOle dCompObjTVeiObjInfoWgEquation Native hS\TT T DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   "f"W 1 ==x 1 "- a 2 4(2W 1 12 W 2 12 ++b) "-2 W 1"- 12 W 2 12 ==0 "f"w 2 ==x 2 "- a 2 4(2W 1 12 W 2 12 ++b) "-2 W 1 12 W 2"- 12 ==0_1501240885?{ZFʌʌOle xCompObjY[yfObjInfo\{ FMicrosoft Equation 3.0 DS Equation Equation.39q(]_[ x 1 x 2 =a 2 16(2W 112 W 212 +b) "4Equation Native |_1501476708gw_FʌʌOle CompObj^`i FMathType 6.0 Equation MathType EFEquation.DSMT49qSó$7T 7 DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  2W 1 ObjInfoaEquation Native _1501476707dFʌʌOle 12 W 2 12 ++b== a2x 1"- 14 x 1"- 14 FMathType 6.0 Equation MathType EFEquation.DSMT49qCompObjceiObjInfofEquation Native _1501476706lbiFʌʌS$'T ' DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  W 1 12 W 2 12 == a4x 1"- 14 x 1"- 14 "- b2Ole CompObjhjiObjInfokEquation Native  FMathType 6.0 Equation MathType EFEquation.DSMT49qS$6T 6 DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  W 1 x 1 == a4x 1 14 x 2 14 "- b2x 1 12 x 2 12 FMathType 6.0 Equation MathType EFEquation.DSMT49q_1501476705nFʌOle CompObjmoiObjInfopEquation Native _1501405942sFOle CompObjrtiS$aT a DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  W 2 x 2 == a4x 1 14 x 2 14 "- b2x 1 12 x 2 12 FMathType 6.0 Equation MathType EFEquation.DSMT49qS/$5T 5 DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  F * (xObjInfouEquation Native K_1501243711xFOle )==2 a4x 1 14 x 2 14 "-2 b2x 1 12 x 2 12 ++ a2x 1 14 x 2 14 ==ax 1 14 x 2 14 "-bx 1 12 x 2 12 , FMicrosoft Equation 3.0 DS Equation Equation.39q_: (1,w 1 w,w 2 w)CompObjwyfObjInfozEquation Native {_1501243792v,}FOle CompObj|~fObjInfoEquation Native C FMicrosoft Equation 3.0 DS Equation Equation.39q' F * (x) FMicrosoft Equation 3.0 DS Eq_1501243817FOle CompObjfObjInfouation Equation.39q' F * (x)Oh+'0H    (08@SOR '15 Samo Drobne Normal.dotmKEquation Native C1TablerSummaryInformation(xDocumentSummaryInformation8DXI^vjkxSKQ ˵^[ "(؂[XuЎ*T 骠8"t:8."TAIzchK^(htVRZwDu:ƢV6bdo1 ( %\&VBNLfvVV`d5LMTvJm/Rژ'I!]\/mEBL+;I=[HxxpI cT ^~O23~i~e_$֏g:ˮcЩcŗ%1m><]7G-ы1)l`~[u~z~~DU i8C\܋׏t2ilOB+';omdd+1gּhHID6Dd 0D , 3 A+?"?+25J%!zhg X`! J%!zhg  |mxS;KAXAE` V6ZhJ _c`e`#[\cPT (g&` o7(huE KV[*rMamB; I}$A& Q ayd/k6 B/hSifuKڭhllg]Mrͤ!`d󹢹+TJuZ{ܷ[iQR7pԌ<2$O:x ]~?*Mp6Ǩ{:=|bܪgjm`3t/n} }:}hK_i/F,Up%`!⎩E!>,Up`(0xRJA$\9$HBH&$ m!*`B|`c!bVϙˆD,˲f ȕ@N(ȥl}WM mIKa_ ҰLOtz!%~2`:3hQ (Y9v즵g~éӲa:J/țZD4Hw؍b?ј5']Jg#̣#.u:˻uڋ\7ҍ4MTc3rcMIFiSosm?O}\{ Z`\Ҹ{KA,0Cus ?jY6[i0Ȩq0ސuDd D . 3 A-?"?-2SFqj4OH`!SFqj4OHb` 3-xRJQ=QXE(aG-Pi@Agi"z^Bj%- WHNwgj¨;\{w@ u 1^19>IAONHq)/2]%d[)_,I6i `qvqPN r^KN*K-Z;2}?^g7ߚn9bOӿ݉!8t^~;Kk XEED,F]1nͬO^0㬻43^ ֫ޔ{!ź,~y`܃kgc(Ìs?ȷc_[dc`yfkS㖏'ՖF,vDT[zRz0e߁"8wp3L)ϰ3 OѵDd D / 3 A.?"?.2"VO4H7{I`!"VO4H7{^` T/xS=KA};{IXv "X(b$lQ0*(,*@Q$ sQ1]]c>7,BVw)NznAbMC;ւ@=`loF- `䷖sF1h &SK7]tnBbuҡ5.GdX`c34zN~necuQd9PNvd.nȰo&b⹕baӝ-z1Z鑷;TzK.dU,=?mWՆ-ka5ه~8ͼT7ÛnV3|% xtR $~Cf*pʏ_]OUI]K kXJ Dd b 0 c $A/? ?3"`?/2Va0Rg$zf$2`!*a0Rg$zf$d `;$xVMlE~38îCBDmʫq 1q`l4c!a "*C8pU"CEU@U*nUO=J+K(|o8)Jyn!n~,1åjrͣަur"vH>@+4H߈5##0ѽ>stۘO\B5~+{ͳYl(r-(Ǚd$S C9r5M,XjBJo ЍʺVnwלX[M{Kt@w1tP-:桄PF_|///Lʗ b62^ +6{\]6mkqRGh;5J%d$vqտ>jJ};ӏ33lWsqqo8/;"D3U,Sl8?jevG(^>bJy Clm(G& ƬPZiyuձ߂QR.q}9)3Z}lV.xܧz|51[XղJV-&(95;Dϛjf~~XZ3VZsW<7Zv񃥊o)|"R-L_-df?OP#8ؘ,2,HLcἌ3Xʌ 2zL ~B!%W,QPOFa^bjRO&H\3$jg4 *%=ȚwiV_Ұ6uȸL( Y/.%X$*`3D//kCʭ5U-HЬ]_2 ¹5;# C?` Dd 3 b 1 c $A0? ?3"`?02VR[wM[22`!*R[wM[2  xVMh\U>_& MʹQĊ vwog34C&f|nL[-."Ņi\UT) f!.Q.DJYU"q{{Ͻ<y] j:uL2* >KZfgF ”0[ =@Io)_ 06 d e|#T{bX}i7W]oj[K5ő{.Zzz;v>T`h×dľ[H<'ޏkip9> xSGx'VT=3SZ59^!4093U| 0R;j|kB3emRvy%?:C2誸o/t#˴.(Le\oa/(g=dcT@h@D ?ZŻ.;{3fqM[ V +/< z/nW>\1%  (Dd b 2 c $A1? ?3"`?12x +I``!x +I`v8\ L xTMhSA}W(C,UPAK-QH!D0Fl!<PAC ^9yOѣ`Ŋqf߾你caoٷ"-(8 <aB!%)1a|/`ɦN$$쐵M&ryVlݯDH3xX4ghi&%9 Y\rBE\||#Az7ȱ0 FG ~Ύmb[Yܒ/c$YFI־01Q[w1|Tp͒\)хÆ,ީWWsWb^_w{}MmՔ{:7[.޳.$W ?~WSQ?/za0w\د3w2z0iQ/ԪWw.Gҽ9T\E#guzؑ<"0~3n9_xl0 7_WX/@-h<_5<Ĺ+c::kΥʍGW}LBHw| ĩZG@NDxKCe%gDd 8 (0 3 # A2226p?^#1 |``! p?^#1 |` @ xVMlE~3Ώ&HMԪi]*KK9lU8UA'!8ʉ!8© =UJJߛn1j1ٳo޾7߼w#6#l6g.~m7ͷ{:qSb^05A/o|pڂ9۔'x`(*fi=g>mu:œE0Iݸʹ*?D"GB{{DR2z}r4Sx} r*ӕBĀgB9MǙs-J'iR#TiJSxgSILpn^8ɳ8ji{}Нako43G0r1@ wpV PߙPC*\l24VUt| ,m ;n}VcZu!ؠ+ѫݫ4r&Dd C(0 4 # A332!8/!3DpN &T~c`!v!8/!3DpN &T +@XC DxX_HdUι93C+ RBH:=H;601'*v]#|iA( -ا-Z$brc߹w%Na~;|92p&A'l^1b|_bukxk9E~ f^KMx=a Hu>SBl\[BB[ȉDe]JMelݪl=PO&λP!%Tޖ8myt^>3-Wt~.վ~P!Ͽ j Sˊgt1筷c~$/bfŁq)R]j>u wZrS8Q! ;'1Bާc?tL:xj~ٮ?dLM ڼ8xP<Ž*Zc2Y}k+"˔iefjl[PJZt -Pu톣ʚkfIjay̨R#*RnJCQBq5+e(Yq5rRW*DVQFb;l<舁;Bij { 5+iǦU3 :a4:c-tmUmrn)L0ǿ>yYw|>? xUs ~xϴɊJSy1񖅸`L|Fоz嚁)zi5KȑtCz]=ZW[f9uxn|t2 zvn̗<jL}v tVRfĬ10?ֵ]Yӫ "[w_q齛қHd.aGovzINHvTnto/ЕtscX'N@v &|93f{RXt$EJ|}:7fSP 퉥P!~ RR/-% #%Ӎo`Wuo$Q_cYƱa1|m`6)K=mDpJtqXȣ0RB iSp1X@ʐ'e6IR(1Gd+jQ2(iJ"8fT:pbh&Y`՗s2Q3Z+v)έ}Z o('(dFr"d6X;DGjW"e_#?$a[Ǖ vs8} pUQDߡBwkO*?.wDd Db 5 c $A4? ?3"`?42E;7~;!`!;7~; #p:7 xWOL\EfewYxRPBLӈaYP<`6/BfWAC4ƃ[z&m` i4Ѓ㩉iͼ}|33oA@\8`8cuFWY %fk%l j,#]@3|^khV5Ɇ:'>D"e6S;*>R R 6[mIgWdo-R[ro(Qnײ_dOQ;vlW} 6tB'|MRdǀ%v$E_VS5ژ?Șa oSHI~'ө\ |tr} no\[Xb7T8P qlu`Z7 !G8"'L󽐍yN-sFHuf)1[c㎝Xx6LN)Od嗚OW9sQOzr*wLS#}me~kwlI'Ux%Iۓ]K č/al/Z{4ctfQS%-Vz3j۷|c-[·>[L_Ly*˖|CQ^}lH 'G}%э5N w[qdŦ0vooF@sҮvHmO= ; dJ'_E, ?33ʥf&өԓLvN<L,OғsT*V*"z|va.DDsIӃc#Űxl&Ǒ qCu!u3B 8[`,vz 9*oʵ "+h9V̑TQǶ[V0Ct.\A҆@< ۆ/)lqeS i;im5 Qhied%N d6Lȴb4==8/B ]rZP%];R?;0uLKel17{%opX,}tS/i CDd D 6 3 A5?"?52Yi[ym/`!Yi[ym/ 0)eMxTkQ7Mnc5=hZHEɩ7{9!B[^= zA(^ĂXp}^x|3o7)`xV^) P؋jZ۲_KF1OP ;ڢY-|5'kwkAI>0NֿG0iSjVS*VeuVbv+'<X"xNc0Aaw>qy/;{%8A'8ߎ /04[ƊiVסW8OYZ`Њal=N_{ Ot<8;6'׶GƷCt .`F!q|Ggkw5Og[Ie<s 0e[ڿG}-j&/ź?u+}m*[-Ư% yЁ1Aܘ Rt/PYx*$=D4ֽDd D 7 3 A6?"?62%mK+&"/QW1X DKpb&A1GwTQf5#Q?[d=Xg ? !9}(\idܮ)$WB+ϩqא񬇛xjt^Cy:̓b4u}Ǡ IjS^惲"q˦IGb#k_?u^̻V ?Wr.!s^#q.WU4Px=<)}39cfPdsTDK?kjSɩgm '= ĩM+72PyʘׯagL O.GDd |D 8 3 A7?"?72lXL1 CL6MDVH`!@XL1 CL6MDV`]íxPJQ=3l.iXX~@b),w-VKk|B~J o d=swM텹g̹P HU-¿VUk.q-u"mW7 b ds& B/^} Ğ{{쌍uEؿAt];Oh, Fu^? ~ ~WlԱ3ms}\=3]L>uSx~JK5›ї]00^?۞ô\,OLlDd X@0 9 # A882qRU>:4M`!ERU>:4+ CpxX]lU>ޙ:VXhvBL]ڭE[Rm# &ڭ]J*c.$}1Ú4!yR&D}}0bYXEΙss; ݀`񢄋\"tuuU CQŐ(*x?15:4MdIm԰ "Jg:8N /9@\j@:/V"ѷO~^6ʯ \%^u_Ǥ4'`A#-9Yˏ+Eïeګ,rA_d},)k@X͒nUQyѤ=O~|Ȩ6q)@7uKR$E%gM _+}9i_o#TP ) $.F^?)H W:3𕿠\k4[2P/* B7zM7u [uE ]GB\r8S.؄-ڌKA6X& OMd{d8U#N?:\ N/n]rnp]ggB*&Ѩɤ55+r'.rT>dgk$)]`CJe~-H-{(_I#9l2z32yTgÓ;6QL&VRn]&kLv3cuxTyb朶b2T^vD_glt₊߿K]Qv#?ಇa2*kË^Z mѶN^Xc&T%zٞ+ᑊ""T2blj,mCq Z⻉|>?]aEܟ;YW["®g#1{X&7o z a\Zܮ`F̚ǞLFy^ :[>+Ʊ2F3\+VoTC-PLP*)27D3:S5jgG0v׀&kdBezt1iyFp[G. zT{$#Cicm3ewtt`]m\3?q'Efs=]]"Tnxp09O Onz HÁX:7KvMN $r?L/wM:9ycS O}j86˦(?Ơ/Sm>^j-k5xbT/x3a gL7ςc0?کƉvtJsOT <2[EƿD ÕUƧ]\;&/%*,l J3EyU QXرg6fld|q#*t pJ{tz4H IˉmhN?3‰}Xhy/<{g[;LRub}t {4LmZ.㕟p 5R~ qiM=?U X/;;?{ HMDd Tb : c $A9? ?3"`?92ev]dSdA}`!9v]dSd˒ HXJxcdd``> $X bbd12,(ㆫaR`:(Wcgb qРc@ UXRY7PLY ZZ QF<4{:]j mQ^J_~35R@0,Jy s?m`t`9 H|!ؙP 0#RpeqIj.=ȝ @ ] @%v~F"Dd ,T0 ; # A::2ep'ݣc5&TA`!9p'ݣc5&T XJxcdd``> $X bbd12,(ㆫaR`z(Wcgb Aǀ7$# !lo&A $37X/\!(?71!Í)e ei,@u@@ڈ)ؽF fj`Xx@~rRy% C3n``10;F&&\r;:,  JIb#3H;G^Dd Tb < c $A;? ?3"`?;2t5oslv`!|t5oslv@# `6XJJxTMhA~om][kV&"- Qz* -l4${rox"^EO"'A̓x,{u(@ޛAH}T W;P5Me^VjCڻn&Ag oY&´\jWqPV`O"T7:spGҤ8LڝMg|n 6{ ~&pӷފ{ի+%pZ(U0?7&0k)zД{OIogY~QcJ;LƗR&^jr %wgH- /1f|Pw3ؓby_Ɣ7MiƱWħ΁Nf$NȪAB~7qƢ71ƣ? 3 A=?"?=2X]ĝ^&o`!gX]ĝ^&4`@0|5xTAkAfhM6CQJ Š-YGIeRCPzœTiQ:a|yo@HJ@? ?3"`?>2D) lT%F `!) lT%F:`R!xcdd`` $X bbd12,(ㆫaJ`l`3H1g`Yj@hPsC0&dT20( 01d++&1#+8|-7K[T 4Hq10:0[^$A.$Cr;F&&\y @ ]` ?l,L0e8IDd lb @ c $A?? ?3"`??2omǁL`!omǁL@ pxR;KAD4EHaeDA` ^⺀ ()RHBJ439wFt`ofvh>0l~Z:=R@q(IK&,P!$QZTN6s}bRF 6=j07Iި>*Y{kﴑ5jB${`ؖYm14Qh_.Wjb4/~Jֵ+ڬ'%6/^!l4$]~t*WWK%_t4[89$}@OiՏE/c[#܎ӻpNy L%k$FUnDd hb A c $A@? ?3"`?@2A} is6:`!A} is6: #@(t6|ZxTAkQKjMZk5-ZE DzZK][hYDE(=MYEMOœMA:vD.l73̷g HzS"\ |24O}@GZKId')kδhT_2JV1'Ilun.EkԿ1Yˣq"/sKIr&.5^N}ಖ9cܟi?> yMƏ\c/WǺ|}녜/0yd|.>>ۯ[u\=ٿoo1Ե`Uk'c(ቱ7ώ1Gu{1## D)txb#A+ǪT=&n(VpRbD$3܈dNxS)O%UGcn5Q.ODnnݐ5!Ork}Bw09nӌ_E$K-uѮVMmKz˼x?ɵ>][ g{Y \߅l;(E\Z@~gU<͚ v/Dd b B c $AA? ?3"`?A2yg0;ȰпUU`!Mg0;ȰпU$P%xTMOa~i 6z0H$+&B+ָD6C??8<x2?:3Eې̼̻cPr.AVhG;CavTcY9"#,:0 `0~ɻ}~6fW  ~׎EPYr=gv٪kx+~틛̵j<]g"g0*G<#9өxgVr!;]wwsMp ^j\V` |fב_мV2嵒??+yd3%8^<Z<Uc"ci&n ~<";Wtzڗw Q~SDOJ3+;/@ }}>]޽}HTW~q.~HY5(MGV$Ӎ>,ŏNۛl k)?ex*/:9OIneX:sDxT0Hc}2DWͦH&,Eת]&!zDd T pb C c $AB? ?3"`?B2Y"7 Mz"2`!Y"7 Mz"N fxUMLA~3-M@ +4\H(mkKc)uF("ړ $!@{t(Vwi UՅmj1_1ݑlfInGGaCUmd:]'zkDd p6 D 3 AC?C2^T'_+G:`!2T'_+G 8'xVkWޮb,;4QumbbY\D"zMX+H(!^ s۔BR TyVUh#v;f^tH3"pF"IZ-)bJQ~Л}  +W֖L%6=o=]t߃ c5|DhB%q5JR%[J[ruQM3e? 9cyq^4(y7?p/Xe2q\']`uNheF0;g'лBq4maOXw\a6{xeY"a\>Z;,OGe(P䏘=tqo R.-m"mZ'cOϯ%Xm >htiF~x|{Yoئ-6xZx|uĠNO.-2O?g͚u/ZfhN.U@g蝝[8 ,*RiPgfp٬AD<"B+_,[2pbrɬ}Of8~ P9G)Jk3m/ڛR3Sr {;_I3')p0LeR[! 71}p8l$pb0 k ƵN;Zx5Wl cCU.6&1GzK1rt@i9eKevC0L [Aڷ49NYa'?+Zm,M<;<݃V=Z-ɴDd b E c $AD? ?3"`?D29=j*s+HI`! =j*s+HI@ &PVxXMlE~3YoTvb P7U4MVC& 6$'5(BCT8rrO*%ġ"Ej^PU!f]Ժ}f|L(ok`MD1SGSHZQ~Г:?7z(auF;?'J wW+&A~wTUn~R"Y\>P\?NyN ;S[ AUkkK5R?vmJq͘oQoJ; bSQgq[QaiGA\ש /UiGA,!VOcoF}83t.t*=:3MϷlӯ_6l WE<8al T~Ht(SI]dfd!x2\P8ߨ+'flN̂=דgaF#EN|nŨõW%1R!~v9wS,X|#~z-mUϹM|qqbfN̾uVÌÜ*\;V2D3t\ ۣ7jRTD]m('d=.;V9SǀϼjYc17GdC ' eZ--*RP< @ Ը>1O:RjBW]p*ήڥ*S,Jrb7caJF瞾(L~nXswNIL15PnlI])nCz氻)yYY^~4363E${}J؀]BCVJ6-pWNLz^dt.32Kec+c# 5]}= 3cѓ\&9V79A(>)2usLzοPf&PھbW[7Y|QO&:JtuNơDW"OW86=&ZěW8\v8 K!8yaonU 1Q^RB"(<:y)0(=S]M(bɳr]Z ƒ;-ҭv=$<&hv:T%:tW443h>9?ˇT[dhO_G}_V5n}=Q5Y`AGv\~XL zDd b F c $AE? ?3"`?E2aT,kⱕ=`!5T,kⱕ&@xSKQF6Q# BiV)C[D^m J4!GAP<{aRZ7۷k7ϷP`A/ieKh$F6:';8<6=~QmaenTdtoSK5IH%KnR+_9> 7Q]-%)N;tKr>9[ Xrq}W\u*"HTC֬qqIY{^9+x`WF^o_;' W)=3 }nG9G?3Uarݹ̙dӵle79˼P>udLܖZL{wƽXLQF ~y+hsz f<{z Bh_ջ7r6dluz/)Ƀ"J ?{¦vń٥Dd 0 G # AFF2 u;QD]!_`!W u;QD]!& d%xUMLQ^*P iC)m54l M^^p21`b<B60μݶRHvw;2 @bƋ3fhWUig "mmv]lq@+DXBaPpxeV>"m; @Mx"4$'R#jپj8 g0kW78Fl+RR~x/fCH${pY辭>rglw4̥BiFNdѲVvr/C[܍%Ov|(-&|=W^K:X5Z9$e:wkhNz5[ۃ!k@_"k8Z~0lxl܂osqKlɍy߳MO; )F| @KjZ:z r]AZ\a} =imRި#y#c 7Z.NY*<7 KK>Dd 0 H # AGG2yuUN@WB#nCnU`!MuUN@WB#nCn dxUMhQv7mҔ$mWӈiMK$"-q[MRS-({ ś*"^DO "z)V1ObVٙ7,+P$ $^1CcZjupT4{X`hjb|~VX.û0CjO: 1ѷp$\?B|guvf|7B1?IҜ;niO6}}=Wn:IX0vC_܋&98㙬RV.{䳩||oJ^8(<~?7تƁv!hY3V  6b bqKh+SB--[^ѧsH ܲ-n}߄Q 'DhDIMެ,\Kk(Z!(n6YUmcsd~Jz^ٶ綮w2_+BP~lOmRa F3fg&'C!kH]ayb錒K+9'[ωFF{yn횐woއ<\`N/iF0<^)m6S)b2b6`¸ĐD-֊E;$;l=TĹ[uC)=e?p8}*Xn(ep:"B#Ek H8SN& ? e`boJٳ˩kJeJi}W{S^p%Ep7WgfxWHh>UgV.jPiO r8 2ŰIF".OhFEX73mbcI.sZ eOD"^tmrk/FDd 0 J # AII2s! *嶌gC+O`!G! *嶌gC+ㆲ` GdxUMhQyMZ_ZPֆ 1)&PӸ@nA,JC{7COO*^h=)g'JK'y͛og޼YtQP@,s(ժu>K2ɗ<:Rk ` -i;*kĭ5#L'~L0A3rP2s-Wl]z_&K-$>uIj0emߍsoW׶{bpAĥF[9gA0:Md6;ݡ=C*hJILjSj {< w G~jZעFDd 0 K # AJJ2UM$~ڗt1`!)M$~ڗt, ! h(3dxVMhWveZr6\xcBDe;QmĒױWc=!\1^Kr+JPw> m`ǐ޾yfۙy?ˠ@9}Hg_ʑ7T8ڊw(D k-^K{=8FmeN쑸8Brq5I]|_"_vͰ EAFm\ם%|麔҃:Π^p.) zHq}tXꥏHcޣ>) *=*$*uLh;q\JI7<͖_bp0cFSuX}m;;B}tzGa(Ms4_# Wu1lwufco~~IAUeQK;6h#0Tm@ռz.^=H $_VCI,}WY#N5M> Tp-6&]A]MU$2Mަ0ڡӕb<K;eKwp"77!<|Zn2o'Oz܍{ӭB(y';J1BS1=[Kai8h-ٙu~Z(%N[Na6U̞U'=*_^( tA1₅OhrG3}G&T7Nӣ)6աܙꆐJ&r*Ê0ybxA*8ƴN+8ĜkCX0pKAVf.ޙq4@7.NCnp6Fs5UobRWkxGӽ: õHVd}ݠEMv%W@Qi_cUِ䷑%~GqtӡIL]ptYtǓ+ሾbu+ǕDd lb L c $AK? ?3"`?2S >m h<[`!S >m h<x xROKQ7Ih ꥠ/Ec ?Ъ({kyЩHBB-mT:8޼hW6X6V :@),y|Ӽ, ,Q=h5@XDP=Ϲer`/zo6#`ٛ#غ1z7}Z,th±+C;*9"Xnb^<-yϘy5p|sI[?yJƫn_Oz6w魾 0oFtijqZft@ ~xXV$UdY9)]Bx7wy(&2Microsoft Office Word@F#@@@ 3՜.+,0 hp|  FGGmp< SOR '15SOR '15 TitleNaslovMsoDataStore;MA34U0N52B==2;Item PropertiesU   F Microsoft Word 97-2003 Document MSWordDocWord.Document.89q^, 2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmHnHsHtHB`B {Normal$a$CJ_HmH sH tH `@` J& Heading 1$ Fdh<@&5CJ KH \aJ mH sH H@H J& Heading 2  & F@&5aJmH sH N@N  J& Heading 3 & Fdh@&5aJmH sH DA`D Default Paragraph FontRiR 0 Table Normal4 l4a (k ( 0No List >>@> {Title ]a$5CJ@OJQJ6U`6 , Hyperlink >*B*ph>O> L1 SOR_tekstaJmH$sH$tH$@O"@ L1 Literatura ^7`mH sH H@2H / Balloon TextCJOJQJ^JaJBOBB  SOR_Naslova$5;CJaJ<OAR<  SOR_names5;CJaJFOAbF  SOR_abstracta$5;CJaJDOrD  Naslov_SOR05 F 5mH sH LOAL Naslov_SOR05_02  & F a$;CJZR@Z Body Text Indent 2 d,`hCJaJmH'sH'O bRhpsV^@V 6 Normal (Web)dd[$\$a$aJmHsHtH4O4 cite_site_name&O& doilinkRoR J&Heading 1 Char5CJ KH \aJ mH sH tH LoL J&Heading 2 Char5CJaJmH sH tH LoL J&Heading 3 Char5CJaJmH sH tH 8+@8 "~ Endnote Text!CJFo!F !~Endnote Text Char mH sH tH >*`1> ~Endnote ReferenceH*:@B: %~ Footnote Text$CJHoQH $~Footnote Text Char mH sH tH @&`a@ ~Footnote ReferenceH*4r4 (VvHeader ' p#>o> 'Vv Header CharCJmH sH tH 4 4 *VvFooter ) p#>o> )Vv Footer CharCJmH sH tH 4"@4 NQCaption+ 5CJ\PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3N)cbJ uV4(Tn 7_?m-ٛ{UBwznʜ"Z xJZp; {/<P;,)''KQk5qpN8KGbe Sd̛\17 pa>SR! 3K4'+rzQ TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn R!y+Un;*&/HrT >>\ t=.Tġ S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv u"xA@T_q64)kڬuV7 t '%;i9s9x,ڎ-45xd8?ǘd/Y|t &LILJ`& -Gt/PK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 0_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] jA0=ROR=  f Y* !q#$%'(*+,@../123456788:R;;<? A=CñA#%&')*+,-./02345689:;<=>?@BCDFGHIJKMNOPQRTUVZ\!a+06>=yA$(17AELS[   ) + Z m o   Y l n w # ; = j }  Skm)+MacUhjj}24q)=?,.Ogibvx*=?  G[]nSgi S!g!i!o!!!"2"4"(#<#>#######~$$$'%?%A%%%%2&J&L&&&&A)U)W)))))**m******+++,,,,,,/-B-D----C.W.Y.\.p.r..../%/'/p0001416111122222222203H3J3P3h3j3333=:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::h|~R:::L# @0(  B S  ?5@ , - 9 A p q  P n,.9:d kmp>5AD@B/Z^avx~jFy{)@q G^ $,yzs   ?!j!k!!!5"#?#####$$$P$Q$$i%y%%%%%%%%%%%%M&v&z&{&&&&&&' '#)X)j)n)))******++, ,h,,-E-^-b---3.Z.q.......(/20000071}22223K3L3l33333O7X7d7w7~77 888899999999999: : ::3:9:<:=:@:C:[:]:_:a:j:k:l:::::::::::::;;;.;/;0;];w;};;;;;;;;;;;;$<(<1<5<E<J<M<e<g<<<<<<<=#=(=C=I=R===============fl  P Y # qtnq1{`b %#(#i%%%%%%v&z&{&&))**,,c-g-@.C...22L3P3337B7C7N7O7y77778.8^888 9<99\:]:::;;<$<<<<<<==========33333333333333333333333333333333333333. /  , Z p  w Sn,MdUkj5)@/Ojby*@ G^ S!j!o!!"5"(#?###~$$2&M&&&A)X))))*m**++,,,,/-E---C.Z.\.s.../(/p0017122222203K3P3k333j:j:k:l:p:q:::::::::::::;;.;6;w;;;;;;5<5<6<7<;<<<<<==`<|/6ZpZp60!M2`/Zpl/hRK'7P/:>2v:  fB[T.Y4GZpJOZp,ZZpEd/b`<|f]]iқ@Gl*l/tZplt^v~o~j`;~̡*^`.^`6OJQJ^Jo(TLT^T`L.$ $ ^$ `.  ^ `.L^`L.^`.dd^d`.4L4^4`L.^`o(^`.pL^p`L.@ ^@ `.^`.L^`L.^`.^`.PL^P`L.^`o(^`.pL^p`L.@ ^@ `.^`.L^`L.^`.^`.PL^P`L.hh^h`o(hh^h`o(.0^`0o(..0^`0o(... 88^8`o( .... 88^8`o( ..... `^``o( ...... `^``o(....... ^`o(........^`o(^`.pL^p`L.@ ^@ `.^`.L^`L.^`.^`.PL^P`L.^`o( ^`o(. 00^0`o(.. (xp^(`xo(...   @ ^ `o( .....  X ^ `Xo( ...... x^`o(....... 8^`8o(........ H`^H``o(.........@h h^h`OJQJo(.^`OJPJQJ^Jo(-^`OJQJ^Jo(o pp^p`OJQJo( @ @ ^@ `OJQJo(^`OJQJ^Jo(o ^`OJQJo( ^`OJQJo(^`OJQJ^Jo(o PP^P`OJQJo(hh^h`.h^h`5.P^`P5..^`5...x^`x.... ^` .....  X^ `X ......  ^ `....... 8^`8........ `^``.........^`o(^`.pL^p`L.@ ^@ `.^`.L^`L.^`.^`.PL^P`L.^`o(^`.pL^p`L.@ ^@ `.^`.L^`L.^`.^`.PL^P`L.^`o(^`.pL^p`L.@ ^@ `.^`.L^`L.^`.^`.PL^P`L.^`.^`6OJQJ^Jo(TLT^T`L.$ $ ^$ `.  ^ `.L^`L.^`.dd^d`.4L4^4`L.^`.^`.pLp^p`L.@ @ ^@ `.^`.L^`L.^`.^`.PLP^P`L.^`OJQJ^Jo(-^`OJQJ^Jo(o p^p`OJQJo( @ ^@ `OJQJo(^`OJQJ^Jo(o ^`OJQJo( ^`OJQJo(^`OJQJ^Jo(o P^P`OJQJo(hh^h`6OJQJ^Jo(88^8`OJQJ^Jo(o ^`OJQJo(   ^ `OJQJo(  ^ `OJQJ^Jo(o xx^x`OJQJo( HH^H`OJQJo(^`OJQJ^Jo(o ^`OJQJo(^`o(^`.pL^p`L.@ ^@ `.^`.L^`L.^`.^`.PL^P`L.^`.^`.TLT^T`L.$ $ ^$ `.  ^ `.L^`L.^`.dd^d`.4L4^4`L.^`.^`OJQJ^Jo(-TLT^T`L.$ $ ^$ `.  ^ `.L^`L.^`.dd^d`.4L4^4`L.^`OJPJQJ^Jo(-^`OJQJ^Jo(o pp^p`OJQJo( @ @ ^@ `OJQJo(^`OJQJ^Jo(o ^`OJQJo( ^`OJQJo(^`OJQJ^Jo(o PP^P`OJQJo(\^`\o(\^`\o(.0^`0o(..0^`0o(... 8^8`o( .... 8^8`o( ..... `^``o( ...... `^``o(....... ^`o(........ltv:K'7Ed/blv~60!l//:o~l/@GlJO;~,Z/62`/tf]]i fB.Y4GMʾ @ ^`OJQJo(ʾ @ ^`OJQJo(*5*5*5b({$$$$$$$$*5*5*5$$Nm$$$$$$$         >U$$$$$$$$$Nm$$$$$$$$*5$$$$$$$$$$>U$$$$$$$ZG$$$$$$$$ @ @ @ gRgc gU$gL&gQ9gtRg@Wg:=]g|5wg6"{gNjq@"Mnn~$n?w9~'DsQB//{8I K z  w @ DF 8o + & Q#O?px3 &XZfiv56+~ #@z/9\y_wsJ X, Bw P!e!X"se"_#+t$c%&<%q & '0(`f()*hT*v+c{+6e,/'1:*1491L1T1F2V27A34A4:36B6Z7b-8M;w;0<@=*>7?@?br?@@v@NA~A BaoCMD}DMF]TF:G>G HH|HJK zKjL-M(1M__M>N{O1P4POPb,QRh!RbRS"STT>T/U5UVHfV["[7[{[o7\7\k`\f\i[]c__#_%/_:a^a c7dz>djdaSe fHf#[g~ghi0jRj'k;k>kO l lIlMlm&mXmG)n.n|8n8oGoYoEpKp\p4zqrVrjr`sFtvvUvI-w?wjw~w x11xeGxOx{xXSy){-{>}>}&~a~x$8QYUNQ\ ,eV!;ue 51 6= \UK*,* |Re fL^)sB7;Gdc~O^BxT\A?Fm%l(#N[PY%<F70R1Ts=R[ VpuTn+#%i*JH/?Q{tM#$ LC_gUuw%\_U{hit,Cu('Rdd1%,Blc