Pregled bibliografske jedinice broj: 771902
Offset-sparsity decomposition for automated enhancement of color microscopic image of stained specimen in histopathology
Offset-sparsity decomposition for automated enhancement of color microscopic image of stained specimen in histopathology // Journal of biomedical optics, 20 (2015), 7; 076012-1 doi:10.1117/1.JBO.20.7.076012 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 771902 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Offset-sparsity decomposition for automated enhancement of color microscopic image of stained specimen in histopathology
Autori
Kopriva, Ivica ; Popović Hadžija, Marijana ; Hadžija, Mirko ; Aralica, Gorana
Izvornik
Journal of biomedical optics (1083-3668) 20
(2015), 7;
076012-1
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
color microscopic image enhancement; offset removal; fast proximal gradient; histopathology
Sažetak
We propose an offset-sparsity decomposition (OSD) method for the enhancement of a color microscopic image of a stained specimen. The method decomposes vectorized spectral images into offset terms and sparse terms. A sparse term represents an enhanced image, and an offset term represents a “shadow.” The related optimization problem is solved by computational improvement of the accelerated proximal gradient method used initially to solve the related rank-sparsity decomposition problem. Removal of an image-adapted color offset yields an enhanced image with improved colorimetric differences among the histological structures. This is verified by a no-reference colorfulness measure estimated from 35 specimens of the human liver and 1 specimen of the mouse liver stained with hematoxylin and eosin, 6 specimens of the mouse liver stained with Sudan III, and 3 specimens of the human liver stained with the anti-CD34 monoclonal antibody. The colorimetric difference improves on average by 43.86% with a 99% confidence interval (CI) of [35.35%, 51.62%]. Furthermore, according to the mean opinion score, estimated on the basis of the evaluations of five pathologists, images enhanced by the proposed method exhibit an average quality improvement of 16.60% with a 99% CI of [10.46%, 22.73%].
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
HZZ - 9.01/232
Ustanove:
Institut "Ruđer Bošković", Zagreb,
Medicinski fakultet, Zagreb,
Klinička bolnica "Dubrava"
Profili:
Mirko Hadžija
(autor)
Marijana Popović-Hadžija
(autor)
Gorana Aralica
(autor)
Ivica Kopriva
(autor)
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi fulir.irb.hr biomedicaloptics.spiedigitallibrary.orgCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE
Uključenost u ostale bibliografske baze podataka::
- MEDLINE