Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 771680

Generalization of Jensen's inequality by Hermite polynomials and related results


Aras-Gazić, Gorana; Čuljak, Vera; Pečarić, Josip; Vukelić, Ana
Generalization of Jensen's inequality by Hermite polynomials and related results // Mathematical reports, 17 (2015), 2; 201-223 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 771680 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Generalization of Jensen's inequality by Hermite polynomials and related results

Autori
Aras-Gazić, Gorana ; Čuljak, Vera ; Pečarić, Josip ; Vukelić, Ana

Izvornik
Mathematical reports (1582-3067) 17 (2015), 2; 201-223

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Green function ; Jensen's inequality ; n-convex function ; Hermite interpolating polynomial ; Cauchy type mean value theorems ; n-exponential convexity ; exponential convexity ; log-convexity ; means

Sažetak
In this note, we consider convex functions of higher order. Using the Hermite's interpolating polynomials and conditions on the Green's functions the results concerning for the converse of Jensen's inequality for signed measure are presented. Using these inequalities, we produce new exponentially convex functions. Finally, we give several examples of the families of functions for which the obtained results can be applied.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
117-1170889-0888 - Generalne nejednakosti i primjene (Pečarić, Josip, MZOS ) ( CroRIS)

Ustanove:
Arhitektonski fakultet, Zagreb,
Prehrambeno-biotehnološki fakultet, Zagreb,
Građevinski fakultet, Zagreb

Profili:

Avatar Url Vera Čuljak (autor)

Avatar Url Ana Vukelić (autor)

Avatar Url Gorana Aras-Gazić (autor)

Avatar Url Josip Pečarić (autor)


Citiraj ovu publikaciju:

Aras-Gazić, Gorana; Čuljak, Vera; Pečarić, Josip; Vukelić, Ana
Generalization of Jensen's inequality by Hermite polynomials and related results // Mathematical reports, 17 (2015), 2; 201-223 (međunarodna recenzija, članak, znanstveni)
Aras-Gazić, G., Čuljak, V., Pečarić, J. & Vukelić, A. (2015) Generalization of Jensen's inequality by Hermite polynomials and related results. Mathematical reports, 17 (2), 201-223.
@article{article, author = {Aras-Gazi\'{c}, Gorana and \v{C}uljak, Vera and Pe\v{c}ari\'{c}, Josip and Vukeli\'{c}, Ana}, year = {2015}, pages = {201-223}, keywords = {Green function, Jensen's inequality, n-convex function, Hermite interpolating polynomial, Cauchy type mean value theorems, n-exponential convexity, exponential convexity, log-convexity, means}, journal = {Mathematical reports}, volume = {17}, number = {2}, issn = {1582-3067}, title = {Generalization of Jensen's inequality by Hermite polynomials and related results}, keyword = {Green function, Jensen's inequality, n-convex function, Hermite interpolating polynomial, Cauchy type mean value theorems, n-exponential convexity, exponential convexity, log-convexity, means} }
@article{article, author = {Aras-Gazi\'{c}, Gorana and \v{C}uljak, Vera and Pe\v{c}ari\'{c}, Josip and Vukeli\'{c}, Ana}, year = {2015}, pages = {201-223}, keywords = {Green function, Jensen's inequality, n-convex function, Hermite interpolating polynomial, Cauchy type mean value theorems, n-exponential convexity, exponential convexity, log-convexity, means}, journal = {Mathematical reports}, volume = {17}, number = {2}, issn = {1582-3067}, title = {Generalization of Jensen's inequality by Hermite polynomials and related results}, keyword = {Green function, Jensen's inequality, n-convex function, Hermite interpolating polynomial, Cauchy type mean value theorems, n-exponential convexity, exponential convexity, log-convexity, means} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet





Contrast
Increase Font
Decrease Font
Dyslexic Font