Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 769957

Attribute Selection for Predicting Credit Default with Decision Trees


Pejić Bach, Mirjana; Zoroja, Jovana; Šimičević, Vanja
Attribute Selection for Predicting Credit Default with Decision Trees // International Science Index, Vol. 17, No. 6 Part: XXIII / Elhadj Benkhelifa ; C. Suheyl Ozveren (ur.).
London : Delhi: World Academy of Science, Engineering and Technology (WASET), 2015. str. 3995-4001 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 769957 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Attribute Selection for Predicting Credit Default with Decision Trees

Autori
Pejić Bach, Mirjana ; Zoroja, Jovana ; Šimičević, Vanja

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
International Science Index, Vol. 17, No. 6 Part: XXIII / Elhadj Benkhelifa ; C. Suheyl Ozveren - London : Delhi : World Academy of Science, Engineering and Technology (WASET), 2015, 3995-4001

Skup
ICEIE 2015: 17th International Conference on Enterprise and Information Engineering

Mjesto i datum
London, Ujedinjeno Kraljevstvo, 29.06.2015. - 30.06.2015

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
credit risk; attribute selection; data mining; knowledge discovery; decision trees

Sažetak
Large amount of data available in corporate databases creates a need for using different technologies to find important information which can be used for decision making in business organizations. Data mining is the process of transformation a large amount of data to useful information. In the last several years, data mining techniques have a widespread use in many business areas. Some of the examples are customer relation management, financial fraud and credit risk detection, healthcare management, churn management, and manufacturing. Data mining is based on the usage of machine learning and statistical techniques on the data that is described using different attributes. One of the important data mining applications is credit default. Accuracy of credit default depends on the quality of the data mining process, as well as on the attributes selected for prediction. Goal of the paper is to investigate which approach to selection of attributes for prediction of credit default could yield the best classification accuracy: demographic attributes, behavioral attributes, algorithm selected attributes or combination of demographic and behavioral attributes. In order to full-fill this goal, we used German credit data set available on UCI Machine Learning Repository which contains sample of 1000 debtors classified according to credit default. First, we created four datasets with different attributes (demographic, behavioral, algorithm selected and combination of demographic and behavioral). Second, we applied C4.5 algorithm to four datasets using Weka data mining tool. Third, we compared the results using several measures of classification efficiency.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
067-1521781-2485 - Inteligentni sustavi kontrolinga, financija i računovodstva digitalnog poduzeća (Peić-Bach, Mirjana, MZOS ) ( CroRIS)

Ustanove:
Ekonomski fakultet, Zagreb


Citiraj ovu publikaciju:

Pejić Bach, Mirjana; Zoroja, Jovana; Šimičević, Vanja
Attribute Selection for Predicting Credit Default with Decision Trees // International Science Index, Vol. 17, No. 6 Part: XXIII / Elhadj Benkhelifa ; C. Suheyl Ozveren (ur.).
London : Delhi: World Academy of Science, Engineering and Technology (WASET), 2015. str. 3995-4001 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Pejić Bach, M., Zoroja, J. & Šimičević, V. (2015) Attribute Selection for Predicting Credit Default with Decision Trees. U: Elhadj Benkhelifa & C. Suheyl Ozveren (ur.)International Science Index, Vol. 17, No. 6 Part: XXIII.
@article{article, author = {Peji\'{c} Bach, Mirjana and Zoroja, Jovana and \v{S}imi\v{c}evi\'{c}, Vanja}, year = {2015}, pages = {3995-4001}, keywords = {credit risk, attribute selection, data mining, knowledge discovery, decision trees}, title = {Attribute Selection for Predicting Credit Default with Decision Trees}, keyword = {credit risk, attribute selection, data mining, knowledge discovery, decision trees}, publisher = {World Academy of Science, Engineering and Technology (WASET)}, publisherplace = {London, Ujedinjeno Kraljevstvo} }
@article{article, author = {Peji\'{c} Bach, Mirjana and Zoroja, Jovana and \v{S}imi\v{c}evi\'{c}, Vanja}, year = {2015}, pages = {3995-4001}, keywords = {credit risk, attribute selection, data mining, knowledge discovery, decision trees}, title = {Attribute Selection for Predicting Credit Default with Decision Trees}, keyword = {credit risk, attribute selection, data mining, knowledge discovery, decision trees}, publisher = {World Academy of Science, Engineering and Technology (WASET)}, publisherplace = {London, Ujedinjeno Kraljevstvo} }




Contrast
Increase Font
Decrease Font
Dyslexic Font