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Abstract—This paper introduces a visual method for diver
detection in the context of Human Robot Interaction (HRI).
The detection is treated as a classification problem, where a
discriminative model is trained by computing image features of
the target (diver) and underwater scenery. This type of scenery
poses great challenges due to its high variability, as it often
presents high illumination changes, scarce features and image
distortions. For this reason, it is desirable to represent this type
of images with multiple type of complementary features. The
system scalability is, however, lowered as the number of features
types increase as the amount of data to represent queries and
indexes also increases.

To remedy this, we modified the Nearest Class Mean Forests
(NCMF) method, a variant of Random Forests, to integrate as
many features types as desired without concerning about scalabil-
ity and performance decay. The system outperforms the common
generative tracking methods which fail to encompass different
type of distortions into one model and ignore background
information. And in contrast to tracking methods using acoustic
sensors which output a single value (distance to the diver),
our approach outputs a region encompassing the diver’s body;
information that can be further exploited to enhance underwater
HRI. Not to mention that camera setups offer higher flexibility in
size and energy consumption constraints than acoustic sensors.
All of the system’s aforementioned capabilities are tested with
real-life data obtained from field experiments.

1. INTRODUCTION

Diver detection has a rich history using acoustic sensors [1],
[2], [3], [4], with several commercial models available for civil
and military applications. However, the requirements for diver
detection in the field of underwater human robot interaction
(HRI) between a diver and an autonomous underwater vehicle
(AUV) are significantly different.

First, size limitations of an AUV engaging in human robot
interaction underwater also limit the size of the sensing setup
to be used for diver detection and tracking. Additionally,
energy limitations of the AUV batteries as well as safety
limits for acoustic energy have significant impact on a feasible
acoustic setup. On the other hand, large range is not required
for underwater HRI, as the AUV would not interact with a
diver far away, rather the diver or divers in its immediate
surrounding. Similarly, a guaranteed coverage is not required,
since the diver could actively seek the field of view of the
AUV.
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Fig. 1. Left: The Pladypos surface platform with mounted camera and USBL
sensor. Right: Deployment of the system for diver tracking and image captured
by the mounted camera. Note the low contrasts and reflections.

With this perspective, visual methods are preferable to
acoustic ones. Previous research in the field of visual detection
of humans, animals and other objects in water has involved
public pool monitoring [5], measuring animal populations [6],
salient animal motion detection to ease expert evaluation [7],
AUV navigation [8], as well as threat detection using active
cameras [9].

Only some work has addressed tracking a diver in relation
to an autonomous vehicle for the purpose of performing HRI
tasks. Sattar and Dudek [10] present a system to track stereo-
typical diver swimming motion, which has obvious drawbacks
when the diver is holding position to start communication
with the AUV. Wang et al. [11] describe a method for
sign language recognition, assuming that the diver has been
successfully localized. Our own previous work explored the
ideas of motion segmentation as well as using these motions
for communication between the diver and the AUV [12], [13],
again relying on a steady video feed.

In this paper, a method based on randomized trees is pro-
posed to cope with the problem of diver detection and subse-
quent tracking. The aim is to develop a robust system that can
work with underwater imagery, which due to light backscatter
in water, presents non-uniform illumination and image degra-
dation (poor contrast and distortion). A list of these computer
vision challenges, both in hardware and software, is presented
in [14]. For such conditions, tracking algorithms based on



ensemble methods and discriminant classifiers [15] [16] show
the best state of the art accuracy and noise-insensitivity. These
methods can update online the appearance model of the target
object (diver) as image distortions change and they take into
consideration background scenery to better locate the object
of interest.

To further address these challenges, the main contribution
in this paper is a variant of Nearest-Class-Mean Forests
(NCMF) [17]. NCMF methods allow dynamic learning as
the number of classes increases, without the need to retrain
all models from scratch; and at each node, it partitions the
sample space by comparing distance between class means
instead of comparing values at each feature dimension as
in traditional Random Forests [18]. As it is later explain in
section II-D, by taking advantage of these properties we can
treat each feature-object pair as a new class e.g. SURF-diver,
or SIFT-background (non-diver), and examine which centroids
best partition the sample set. Hence, this variant of NCMF
eliminates the need of encoding the found local descriptors
into a higher dimensional codebook [19] [20] [21].

Our main application lies in the EU project Cognitive
Autonomous Diving Buddy (CADDY) with the objective to
allow a better human-robot interaction for the execution of
underwater tasks such as the exploration of archaeological
sites and terrain mapping. The presented method is tested for
single snapshots using a down-looking camera mounted on the
PlaDyPos surface vehicle (Fig. 1).

II. Mucri-DescripToR NEAREST CLASS MEAN FORESTS

To introduce the concept of Nearest Class Mean Forests
(NCMFs) for multiple descriptor aggregation, we first ex-
plain Nearest Class Mean (NCM) classifier, Random Forests
(RFs) and NCMFs. Afterwards, we describe how NCMFs are
changed in order to include multiple feature types for each
class.

A. Nearest Class Mean classifier

To make use of this classifier, we first compute the mean
or class centroid ¢, for each class k € K as follows:

JElx XeX; JEl

In the previous equation, each image [ in the dataset is
represented by a collection of feature vectors X, where each
of these vectors ¥ has d dimensionality, ¥ € R?. Then I, is the
set of images that belong to the class k.

In order to perform Nearest Class Mean (NCM) classi-
fication as in [22], we represent a query image Q by a
d-dimensional feature vector xj and search for the closest
centroid in the feature space by making |K| comparisons in
R4

k*(Q) = arg min||lxp — clI* 2)
keK

Equation 2 uses the Euclidean distance to find the nearest
class, but any distance definition e.g. Mahalanobis, can replace
1t.

B. Random Forest

A random forest consists of a collection of T decision trees,
each independently trained, in order to reduce the variance of
the overall model. To classify a new object from an input
vector, the vector is passed down to each of the trees on the
forest. Each tree gives a classification (majority voting) or a
class probability according to the statistics saved at the leaves
I; we say that the tree “votes” for this class. Then the forest
chooses the classification having the more votes, or it makes
an average of the class probabilities. Based on this, we assume
a feature vector of an image ¥ was passed down a tree until
it arrived at a leaf I(¥), then the final classification is defined
as:

1
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where Pj(k) is the distribution over the classes k in a leaf [
of a tree . These distributions are obtained during the training
phase of the random forest.

To train each tree in the forest, we start using the complete
training set S and, as we go down the tree, each subset of the
training data arriving at node n, S, is partitioned by a splitting
function 6". As a result we have two subsets S’l’eﬁ and S 'r’ight.
Commonly, a random set of splitting functions is generated
and the best one is selected according to the information gain

G, as the following equations describe:

S
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H(S") = = " P(KIS")log, P(KIS") 5)
keK
6" = argmax G(6) (6)
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where H denotes the entropy of the class distribution at
node n, and P(k|S") the fraction of training data belonging
to the class k. The left and right nodes are trained with S
accordingly, and the algorithm continues recursively until a
stopping criteria is met, commonly a maximum tree depth or
a minimum number of samples per leaf is fixed.

C. Nearest Class Mean Forests

NCM forests is a variation of Random Forests, where
the splitting functions 6 are NCM classifiers presented in
section II-A. One difference with NCM classifiers is that in any
given node only a fraction of the classes k are used in order
to lower the number of comparisons needed. Although this
procedure may seem to underfit the data, ensemble methods
compensate for this by generating a collection of weak clas-
sifiers (decision trees) and then combining their output [18].
Another difference is that Equation 2 has a multiclass output,
but in NCMFs Equation 2 will assign each data sample to the
left or right child (binary output). Thus, NCMFs implicitly
encode a hierarchical structure of the studied classes.

To train NCMFs, first we denote by K" to the subset of
classes observed in the training data S”, and by S} the subset
of S" belonging to the class k. Then, for each k € K" we



compute the centroids ¢} as in Equation 1. Each of the classes
k € K" and their respective centroids are assigned randomly
to the left or right child of the node n. Hence, our splitting
function should perform the following mapping

@' : k —> {left, right} where k*(¥) = argmin|l¥—c{|* (7)

keK"

In order to select the best splitting function 6", we used
Equations 4 to 6. As proved in [17], NCMFs offer state-of-the-
art accuracy, perform non-linear classification at node level,
have no scalability issues as the number of classes increase
and can perform incremental learning. The concept of NCMF
for image classification is illustrated in Fig. 2.

Fig. 2. Classification of an image by a NCM tree. (a) The image is encoded
into a feature vector ¥. (b) The feature vector passes down the tree, following
the closest centroid at each level (the followed path is shown with the red
arrow and each centroid is represented by a colored dot). (¢) When it reaches
a leaf, the image is assigned a class distribution.

D. Multi-descriptor aggregation in NCMF

In this section, we propose to do a variation on the standard
NCMF methodology in order to aggregate multiple features.
Initially we have |K| classes, each one associated with one
centroid ¢; which is equal to the mean of the feature vectors
belonging to k. These feature vectors only represent one type
of descriptor, we cannot simply average different type of
descriptors because their dimensionality and value ranges are
different; not to mention that they represent different types of
information.

Now, we have a set of feature types F = {fi, f2, ..., fz} and
a set of classes K = {ky, k», ..., k,,}. In this case, to train a node
n with incoming data S”; we picked a random subset of class-
descriptor pairs of the form (f;, k;) e.g. SURF-diver or SIFT-
background, and compute their centroids using Equation 1.
Then, at node n we will have a collection of centroids cZ where
p € P", and P" is the set of all possible class-feature pairs that
can be constructed at node n, P" = {(f,k)I|Vf € F,Yk € K"} .

Likewise, each input image is now represented by z different
feature vectors, each corresponding to a type of descriptor.
Having this in mind, we make the following change to
Equation 7 (splitting function):

6" : p+—— {left,right} where p*(X)= argmin||xX— CZ“Z ®)
pepP?

And as before, we optimize 6" using the equations in
section II-B. It is important to notice that when we apply
Equation 8, the feature vector X has to be of the same type as
indicated by p = (f;, k;). In this work the distance metric used
is the Bhattacharyya distance [23] instead of the Euclidean
since it considers the variance in each vector dimension.
Algorithm 1 offers an overview of how to grow a tree within
this modified version of NCMF.

Algorithm 1 MD-NCMF algorithm MD-NCMF-Tree(S™)

1: input: S”, sample data

2: persistent: ¥, set of feature descriptors
Diimit» max number of class-descriptor pairs
jimir» max number of splitting functions

3. if stopsplitting(S")=true then

4 return createLeafNode(S")

5: else

6: K" « pick classes present in S”

7. P10

8 for i=1 to pj;,; do

9: p < w(K",F), pick randomly a class feature pair
10: if p ¢ P" then

11: P'"—P'Up

12: end if

13:  end for
14 C" « computeCentroids(P")
15:  for j=1 to Gy, do

16: 6" « createSplitFcn(P",C")

17: split S" according to 6" (Equation 8)
18: for all Xe S" do

19: Sl < 0" (k*(X)) =left

20: S ian < 0"(k* (X)) =right

21: end for

22: G « informationGain(S ?Eﬂ, S':l.ght)

23:  end for

24:  select @" that achieve the highest G

25:  return createDecisionNode(6",MD-NCMF-Tree(S, 1 ),
MD-NCMF-Tree(S ’;ight))

26: end if

The inputs the user has to define are the type of features
F used, the maximum number of class-descriptor pairs pjimir
to generate and the maximum number of splitting functions
Ojimir to tests at each node n. Algorithm 1 is only an outline,
cases like when the number of class-descriptor pairs p is less
that pjmi; or when these pairs cannot generate Oy, splitting
functions have to be considered. The stopping criteria is the
same one used for Random Forests, when the number of
samples |S”| at node n is less than a threshold y, the class
distribution is stored at that leaf-node.

III. OBJECT DETECTION BY RANDOM SAMPLING

In section II we introduced a method based on NCMFs to
classify input images; but for Human Robot Interaction (HRI)
systems, image areas indicating informative features about a
person are necessary to further process them for gesture or



body language recognition, for example. Thus, a saliency map
showing the image region where the diver is located is the
expected input for such systems; where high saliency regions
are likely to contain parts of the diver’s body, while lower
saliency regions are associated with background.

To build such saliency map, we follow a similar outline as

in [24] with random sampling.

1. Extract a random subwindow w from the query image I,
which is represented as a 3D point containing position
x,y and size s according to some probability density
function P(M).

2. Classify the subwindow using MD-NCMF as in sec-
tion II.

3. Based on the previous classification, propagate the in-
formation about the subwindow to the neighboring areas
and compute the new saliency map.

4. Update P(M) for all 3D points X = (x,y, s) in order to
start the iteration again. From this probability density
function PDF, another PDF P(0) showing the target’s
location can be obtained.

In order to guide the sampling such that enough subwindows
on the object (diver) are sampled, two PDFs are used. The first
one indicates the probability P(O|X) of an object being present
at the given patch and the second one the probability of already
have explored that area P(E|X); and in contrast with P(O|X)
is not an estimation. These two probability maps are then
combined by multiplication and normalization into a single
PDF P(M) used to generate the random patches. Patches with
high probability of being an object and being in an unexplored
region are favored.

To begin with, the whole image needs to be explored and we
do not have any knowledge about whether there is an object in
the image or not. For this reason, the probability maps are first
initialized uniformly such that Py(0|X) = 0.1 and P(E|X) = 1.
Afterwards, as patches are sampled from the image, the next
update functions are used:

P.(E|X) = max(0.1, P,_ (E|X) — 0.05 - N(w,)) 9)
P.(0|X) = min(1,max(0.1, P,_;(0|X) + 0.05 - Z, - N(w,))) (10)

Z, is the classification given by the MD-NCMF when the
patch w, is the query. N(w,) is a function that computes a
neighboring region of w,. If the current point X is within
that region, the probability maps will be updated for that
value of X. This neighboring function can be user-defined to
include cubic, spherical or some other type of regions in the
neighborhood of X. In the present work cubic regions were
chosen. Iterating through these equations sufficient amount of
times produces smooth results as shown in the next sections.

IV. EXPERIMENTS
A. Comparing MD-NCM Forests with ERC-Forests

We used the GRAZ-02 test set [25], available at http://www.
emt.tugraz.at/~pinz/data, as a benchmark for our framework
before testing it in the underwater scenario. This dataset
encompasses three object categories: persons, bicycles and

cars; plus a set of negative images (not containing the first
three classes). It is considered challenging due to the high
intra-class variations, significant amount of background clutter,
illumination changes and partial occlusions of the objects as
shown in Figure 3. Also the background is highly variable
in each of the classes, which makes it difficult to recognize
objects based on context.

Fig. 3. Samples from the GRAZ-02 database showing the high variation
between images of the same class due to clutter, occlusions and different
perspectives; bikes are shown in the top row and cars in the bottom row.

We followed the experimental setup as defined by Opelt
and Pinz [25]; each of the object classes where tested against
the negative category, 150 images of each class were used
for training and 150 images for testing. Training was done
using whole images, no masks. For each image we applied
the following keypoint detectors: Maximally Stable Extremal
Region (MSER) [26] and Harris Affine Regions (HAR) [27],
which are represented by SIFT [28] and DAISY [29] descrip-
tors respectively. Also a 768-D feature vectors were computed
from raw HSL color pixels transformed by a Haar wavelet [30]
in 16x16 subwindows as in [24].

The performance is measured with classification rates at
equal error rate (EER), Table I shows the mean values over
10 learning runs since the method is randomized. We use five
trees in the MD-NCM Forest, at every node we choose P" =5
out of the P = 12 class-descriptor pairs available to generate
the splitting functions, and the tree branches stop growing
when the number of samples at node 7 is less or equal than
u = 10.

TABLE I
CLASSIFICATION RATE AT EER IN GRAZ-02 DATASET

Bike vs Neg | Cars vs Neg | Persons vs Neg
Opelt et al. [25] 76.5% 70.7% 81.0%
ERC-Forests [24] 84.4% 79.9% -
MD-NCM Forests 89.6% 84.2% 92.3%

The features used in this test where chosen because as
explained in section IV-B2 they have proven to perform
better when used together; this is due to the fact that they
offer complementary information about the query image. It is
important to mention that in this paper we mostly focused on
the use of MD-NCMFs on the diver-localization scenario; but
further benchmarking against state of the art techniques and



inclusion of higher number of features in our model has to be
done to fully determine its accuracy and scalability for a wide
range of applications.

B. MD-NCM Forests for underwater diver localization

1) Data gathering: The experiments were conducted in
July 2014 in Split, Croatia. A diver conducted several passes
on a straight-line transect at average depth of 7 meters and
was followed and filmed by an autonomous surface vehicle
(ASV).

The ASV used was PlaDyPos (shown in Fig. 1), a vehicle
developed and built by University of Zagreb. It is 0.35m high,
0.707m wide and long and weights approximately 25kg. The
”X” configuration of 4 thrusters allow omni-directional mo-
tion, i.e. motion in the horizontal plane under any orientation,
with velocity up to 0.7m/s.

The systems available on PlaDyPos, apart from compass,
batteries and CPUs, include a u-blox Neo-6P GPS module, a
Bullet M2 wireless modem for communication with ground
station, a Ultra-Short Baseline (USBL) used for determining
diver’s relative position to the vehicle and a Bosch Flexidome
IP Starlight 7000VR mounted in cylindrical waterproof casing.
The Bosch camera is shown in Fig. 4. Due to lack of space
on the platform, the camera was positioned very close to the
water surface and was not even fully submerged at all time.
This led to artifacts in the form of visible glow on camera
casing, which can also be appreciated in the diver’s picture in
Fig. 1.

Fig. 4. Bosch Flexidome IP Starlight 7000VR camera mounted in waterproof
casing.

At first, the purpose of the conducted experiment was to test
the accuracy of tracking algorithms using only acoustic data.
Diver was equipped with an acoustic modem and PlaDyPos
was tracking him by calculating the relative position with
USBL. Video data was used to provide real-time feedback
on the diver’s location and later serve as a reference for
validation of acoustic tracking precision. Since the video
data was transmitted to the surface using a limited-bandwidth
wireless network, JPEG images with size 768 x 432 pixels
were time-stamped and recorded at a rate of approximately
10 Hz. This exact same video feedback was used to built the
training and testing dataset for our version of random forests.

The training data set consists of 240 images of each category
(diver and background) and the testing dataset of 50 each.

2) Feature Selection: For a given image, we can compute
different local keypoint or region detectors to detect multiple
features; and for each one of them we can apply different type
of descriptors. The main objective is to represent the image
with multiple types of complementary features, since different
images can exhibit different kinds of low-level characteristics
according to the view-perspective, occlusions and possible
distortions.

In order to see how MD-NCM Forests integrate different
type of information about a query (complementary features),
we combine several keypoint detectors and descriptors to
train our model for the diver dataset collected. Table II
shows classification rate results of these combinations, where
the combination MSER-SIFT and HAR-DAISY is the best.
These two type of features include two different detectors and
two different descriptors. Maximally Stable Extremal Regions
(MSER) often detect blobs of high contrast and Harris Affine
Regions tend to be centered in corner-like features as shown
in Figure 5. This indicates that MD-NCMF is effectively
exploiting and integrating the complementary characteristics
among different features.

Fig. 5. Left: Most relevant corner-like features detected by Harris-Affine
Regions (HAR). Right: High-contrast blobs detected by Maximally Stable
Extremal Regions (MSER). The yellow ellipses indicate the transformation
invariant region selected by the detector.

TABLE II
CLASSIFICATION RATE AT EER WITH DIFFERENT FEATURE COMBINATIONS IN DIVER
DATASET

LOG-SIFT | LOG-DAISY | MSER-SIFT | MSER-DAISY | HAR-SIFT
LOG-DAISY 76.4%
MSER-SIFT 80.2% 82.5%
MSER-DAISY 81.3% 83.1% 79.2%
HAR-SIFT 81.1% 82.9% 83.4% 83.6%
HAR-DAISY 82.3% 82.7% 86.4% 84.8% 80.5%

C. Diver Localization

In this part of the experiments, we tested how MD-NCMF
integrated with patch random-sampling (explained in sec-
tion III) performs in the diver localization task. The algorithm
is stopped after n = 2000 samplings and was used with
three different models; the first two only use one type of



Fig. 6.

Sequence of images showing the saliency maps generated with the models from section IV-C. Each set of images is formed by the original diver

image (top left), and the saliency map from the MSER-SIFT model (top right), the HAR-DAISY model(bottom left) and the Multiple Feature model (bottom
right). Probabilities P(O) of a pixel being part of the diver are depicted in color scale, where red means a probability close to 1.0 and dark blue close to O.

feature and the third uses the combination MSER-SIFT with
HAR-DAISY which worked best in our previous experiment.
Table III proves again that using more than one type of feature
gives better classification rates; however, the ultimate objective
is to observe the difference in using multiple features when
creating the diver’s saliency map as it is the one used for
localization. Figure 6 shows some of the diver’s images and
their respective saliency map.

TABLE III
CLASSIFICATION RATE AT EER FOR DIVER LOCALIZATION
MSER-SIFT | HAR-DAISY | Combined
78.6% 80.7% 86.4%

The model trained with MSER-SIFT features usually rec-
ognizes large blobs as the diver and, when he is occluded,
other background elements are included in the detection or the
detection fails. The ensemble method based on HAR-DAISY
is better at selecting only patches that correspond to the diver,
but these are small or scattered through the diver’s body. We
can appreciate that the model trained with both features offers
a balance between the previous models, the detected areas are
usually connected and adjust better to the diver’s body. Our
saliency map also offers confidence areas, as each subregion
is related to the probability P(O) explained in section III.

In order to quantify our results, in the testing dataset we
manually labelled the image’s area where the diver is located.
We compute the ratio of pixels that were detected by the
saliency map to the ones in the manually selected area (true
positive rate or TPR). A pixel is counted as being part of the
diver if its associated probability is equal or higher than 0.9.
In the same manner, we obtain the ratio of pixels detected as
being of the diver to those outside the ground-truth areas (false
positive rate FPR). All of the previous to know how well the
saliency map adjusts to the diver’s limbs and body and how
accurate it is. Table IV shows these results and proves that the
combined model works best.

The experiments were done with a 4th generation 2.6 GHz
Intel core i7-4710HQ processor, and the average processing
time using n = 2000 samplings for the combined MD-NCMF
model (2 features) is 1.43 seconds.

TABLE IV
AVERAGE TRUE POSITIVE AND FALSE POSITIVE RATES OF EACH MD-NCMF MODEL 1N
THE DIVER DATASET

TPR FPR

MSER-SIFT | 92.3% | 11.1%
HAR-DAISY | 64.2% | 2.4%
Combined 84.1% | 5.6%

D. Limitations

One important parameter in our algorithm is the number of
patches to be sampled in order to generate the saliency maps;
which is application dependant since different tasks require
higher or lower confidence values P(0) and cluttered scenery
requires finer sampling. As of now, this parameter has to be
tuned manually.

Further experimentation needs to be done in order to find out
the scalability of our proposed method e.g. how the processing
time changes as we increased the number of features. With
greater number of features the model becomes more robust
to image distortions but perhaps the required processing time
will prohibit the implementation of a tracking module. On the
other hand, experiments were done only with single snapshots;
for tracking it is possible to use the history of the diver’s pose
in order to narrow down the search area. In our framework,
the probabilities of the exploration map P(E) in section III
will have to be changed depending on the previous analysed
images.

Also it is important to mention that in the diver localization
scenario, bubbles from the oxygen tank were the major source
of diver’s occlusion. For some applications, these oxygen
bubbles can be considered as a reference for the diver’s
position, or their location can be used as a substitute when
the diver cannot be seen. In this work, we chose not to
consider them as part of the diver because our goal is to use
this framework to enhance Human-Robot-Interaction, where
precise location of the diver’s limbs is needed. For this reason,
oxygen bubbles that occluded the diver in the training dataset
where manually labelled as part of the background scenery.

V. CONCLUSIONS

In this paper, we introduced a variation of the Nearest-
Class-Mean Forests in order to aggregate multiple features
without concerning about memory compression problems,



scalability or performance degradation. The use of different
type of features to represent complex environments such as
underwater terrain outperforms single-feature approaches, as
shown in the diver-localization scenario where high variance
illumination, low contrast and occlusions are present. This is
due to the fact that each feature copes better with specific type
of image distortions, and they complement each other when
aggregated into a single model.

In the process of developing the MD-NCMF framework,
we showed that it offers state of the art accuracy for object
recognition by testing it with the GRAZ-02 dataset. More
tests are needed to quantify its scalability and performance
when the input data (number of classes and samples) starts
incrementing. Nonetheless, for our application of interest, the
algorithm successfully recognizes the diver and generates a
saliency map of his location (pose) showing confidence values.
These saliency maps adjust to the diver’s limbs and core more
naturally; thus, they facilitate the processing of human-action
understanding algorithms necessary in HRI applications e.g.
gesture detection and interpretation. Also, we have an indicator
of which image-region detectors and descriptors work best
with underwater imagery thanks to the real-life data gathered
during AUVs field testing. Further work needs to be done in
order to offer an insight of how to tune some of the parameters
used and to implement a full diver’s tracking module.
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