C HRVATSKA KONFERENCIJA O VODAMA S MEDUNARODNIM SUDJELOVANJEM

HRVATSKE VODE NA INVESTICIJSKOM VALU

$6^{\text {th }}$ CROATIAN WATER CONFERENCE WITH INTERNATIONAL PARTICIPATION

CROATLAN WATIERS
 ON THE INVESTMENT WAVE

ZBORNIK RADOVA / PROCEEDINGS

OPATIJA , 20. - 23. svibnja (may) 2015.

6. HRVATSKA KONFERENCIJA O VODAMA S MEĐUNARODNIM SUDJELOVANJEM

HRVATSKE VODE
 NA INVESTICIJSKOM VALU

$6^{\text {th }}$ CROATIAN WATER CONFERENCE WITH INTERNATIONAL PARTICIPATION
\section*{CROATIAN WATERS}
ON THE INVESTMENT WAVES

ZBORNIK RADOVA
 PROCEEDINGS

Izdavač:

HRVATSKE VODE
Zagreb, Ulica grada Vukovara 220

Uredništvo
doc.dr.sc. Danko Biondić
doc.dr.sc. Danko Holjević
Marija Vizner, dipl.ing.

Likovno rješenje ovitka
DIO d.o.o. Rijeka

Grafička priprema
DIO d.o.o. Rijeka

Tisak

NEOGRAF d.o.o.

Žlibina 4, 51262 Kraljevica

ISBN 978-953-7672-12-6
CIP zapis dostupan u računalnom katalogu Nacionalne i sveučilišne knjižnice u Zagrebu pod brojem 000905555.

Autori su u potpunosti odgovorni za sve što je iznijeto u njihovim radovima. Izdavač, uredništvo Zbornika radova, te članovi Znanstveno - stručnog i Organizacijskog odbora 6. hrvatske konferencije o vodama s time u svezi ne snose nikakvu odgovornost.
6. HRVATSKA KONFERENCIJA O VODAMA $6^{\text {th }}$ CROATIAN WATER CONFERENCE

HRVATSKE VODE
 NA INVESTICIJSKOM VALU

CROATIAN WATERS
ON THE INVESTMENT WAVE

ZBORNIK RADOVA
 PROCEEDINGS

UREDNIŠTVO
EDITORIAL BOARD
DANKO BIONDIĆ
DANKO HOLJEVIĆ
MARIJA VIZNER

OPATIJA 2015.
Uvod 17
REFERATI PO POZIVU
P 01. Dražen Kurečić, Elizabeta Kos, Vesna Trbojević, Karmen Cerar, Višnja Gregić-Biondić VODNO GOSPODARSTVO NAKON PRISTUPANJA REPUBLIKE HRVATSKE EUROPSKOJ UNIJI 23
P 02. Ivica Plišić, Danko Holjević, Nevena Gabor HRVATSKE VODE U INVESTICIJSKOM CIKLUSU 55
P 03. Danko Biondić, Sanja Barbalić, Vesna Grizelj-Šimić, Danko Holjević DUGOROČNI PLANSKI DOKUMENTI UPRAVLJANJA VODAMA 67
TEMA 1. STANJE VODA I O VODI OVISNIH EKOSUSTAVA, HIDROLOŠKI EKS- TREMI I NJIHOVE POSLJEDICE, TRENDOVI - PADALINE, KOPNENE POVRŠINSKE VODE, PODZEMNE VODE, PRIJELAZNE VODE I PRIO- BALNO MORE
R 1.01. Tanja Trošić, Nataša Strelec Mahović, Tanja Renko OBILNE OBORINE I POPLAVE U HRVATSKOJ U 2014. 81
R 1.02. Dijana Oskoruš, Tatjana Vujnović, Toni Jurlina, Željka Klemar EKSTREMNE POPLAVE TIJEKOM 2014. GODINE U REPUBLICI HRVATSKOJ - POUKE I OBAVEZE 91
R 1.03. Stevan Prohaska, Dragan Đukić, Vladislava Bartoš Divac, Nedeljko Todorović STATISTIČKA ZNAČAJNOST PADAVINA KOJE SU PROUZROKOVALE POJAVU MAJSKE POPLAVE 2014. GODINE NA DELU TERITORIJE SRBIJE 101
R 1.04. Zoran Đuroković, Tomislav Novosel OBRANA OD POPLAVA U 2014. GODINI 109
R 1.05. Lidija Kratofil, Milan Mateša POPLAVA ŽUPANJSKE POSAVINE I SANACIJA VODNIH GRAĐEVINA 125
R 1.06. Bojana HorvatKARTIRANJE POPLAVE RIJEKE SAVE U SVIBNJU 2014. GODINEDALJINSKIM ISTRAŽIVANJEM135
R 1.07. Samo Čarman, Alenka Šajn Slak MJERENJE OBORINE - ISKUSTVA IZVOĐAČA NA PROJEKTU BOBER 143
R 1.08. Irena Nimac, Ksenija Cindrić Kalin, Melita Perčec Tadić. Marjana Gajić - Čapka ANALIZA MAKSIMALNIH TRODNEVNIH KOLIČINA OBORINE U 151 HRVATSKOJ
R 1.09. Palma Orlović-Leko, Sanja Frka, Abra Penezić, Kristijan Vidović, Stipe Plećaš POVRŠINSKA AKTIVNOST OBORINE I AEROSOLA NA PODRUČJU GRADA ZAGREBA 161
R 1.10. Josip Rubinić, Ksenija Cindrić Kalin, Mladen Nežić, Maja Radišić, Igor Ružić EKSTREMNA SUŠA NA IZVORIŠTIMA VODOOPSKRBE U SLIVU MIRNE TIJEKOM 2012. GODINE 171
R 1.11. Franjo Prevedan, Tomislav Šlehta HIDROGRAFSKI ATLAS RIJEKE MURE 181
R 1.12. Alenka Šajn Slak, Samo Čarman PRAĆENJE EKOLOŠKI PRIHVATLJIVOG PROTOKA - ISKUSTVA IZ SLOVENIJE 191
R 1.13. Sanja Barbalić, Danko Biondić, Đorđa Medić
PRETHODNA PROCJENA STANJA VODA - PODLOGA ZA PRIPREMU PLANA UPRAVLJANJA VODNIM PODRUČJIMA 2016. - 2021. 195
R 1.14. Valerija Musić, Igor Stanković, Dagmar Šurmanović METODOLOGIJA OCJENE EKOLOŠKOG STANJA NA TEMELJU BIOLOŠKIH ELEMENATA KAKVOĆE 205
R 1.15. Zlatko Mihaljević, Mladen Kerovec MAKROZOOBENTOS KAO POKAZATELJ EKOLOŠKOG STANJA JEZERA DINARIDSKE EKOREGIJE 217
R 1.16. Neven Bujas, Jasmina Antolić, Đorđa Medić DIREKTIVA O PRIORITETNIM TVARIMA U PODRUČJU VODNE POLITIKE 2013/39 I POPIS PRAĆENJA (WATCH LIST) 225
R 1.17. Nikola Koletić, Nikola Malešević, Lorena Derežanin, Roberta Skukan, Stjepan Dekanić, Zoran Pišl EUTROFIKACIJA U UMJETNIM JEZERSKIM SUSTAVIMA - INDUCIRANO STANJE ILI PRIRODNI FENOMEN 233
R 1.18. Tibela Landeka Dragičević, Siniša Širac, Alena Vlašić, Dijana Grgas BIOLOŠKO UKLANJANJE DUŠIKA 241
R 1.19. Jasmina Antolić, Đorđa Medić, Neven Bujas BIODOSTUPNOST METALA U OCJENI KEMIJSKOG STANJA POVRŠINSKIH VODA 251
R 1.20. Gorana Cosić-Flajsig, Barbara Karleuša
INOVATIVNI PRISTUP UPRAVLJANJA KAKVOĆOM VODA RURALNIH SLIVOVA 259
R 1.21. Tamara Dadić, Lidija Tadić PROMJENA RAZINE I KAKVOĆE PLITKIH PODZEMNIH VODA OPAŽANIH NA POKUSNOM KANALU 269
R 1.22. Tatjana Mijušković-Svetinović, Marija Šperac, Josipa Matotek UTJECAJ TEMPERATURE ZRAKA NA KAKVOĆU VODE RIJEKE DRAVE.. 279
R 1.23. Berislav Čengić, Nikola Bataković REVITALIZACIJA POPLAVNIH I MOČVARNIH PODRUČJA NA UŠĆU DRAVE U DUNAV - ALJMAŠKI RIT 289
R 1.24. Gorana Cosić-Flajsig, Ivan Vučković, Barbara Karleuša STANJE VODA RIJEKE SUTLE I MOGUĆNOSTI RESTAURACIJE RIJEKE 297
R 1.25. Draženka Stipaničev, Siniša Repec, Siniša Širac NOVI ANALITIČKI PRISTUP U ODREDIVANJU NEPOZNATIH SPOJEVA U RIJECI SAVI 307
SADRŽAJ IX.
R 1.26. Siniša Repec, Draženka Stipaničev, Siniša Širac
UHPLC-Q-TOF-MS I KVANTIFIKACIJA ONEČIŠĆUJUĆIH ORGANSKIH TVARI U RIJECI SAVI 315
R 1.27. Neiro Bilajac, Dražen Lušić, Lovorka Bilajac, Arijana Cenov, Marin Glad, Darija Vukić Lušíć
MIKROBIOLOŠKA KAKVOĆA PRIOBALNIH IZVORA LIBURNIJSKOG PODRUČJA 323
R 1.28. Jasna Maksimović, Vanda Piškur, Nataša Mihelčić, Darija Vukić Lušić, Josip Rubinić KEMIJSKA I MIKROBIOLOŠKA KAKVOĆA VODE IZVORA RJEČINE U RAZDOBLJU OD 2010. DO 2014. GODINE 333
R 1.29. Andrijana Brozinčević, Maja Vurnek, Željko Rendulić MOGUĆNOSTI PRIMJENE GIS-A U ZAŠTITI VODNIH EKOSUSTAVA NP PLITVIČKA JEZERA 343
R 1.30. Irena Ciglenečki-Jušić, Marijan Ahel, Dario Omanović, Nevenka Mikac, Elvira Bura Nakić,Marija Marguš, Jelena Dautović, Filipa Caktaš Šagi, Milan Čanković, Niko BačićEUTROFIKACIJSKI PROCESI U EKOSUSTAVU RIJEKE KRKE -PODRUČJE VISOVAČKOG JEZERA353
R 1.31. Irena Kopač
CONSTRUCTION OF DEEP-ORIENTED GROUNDWATER MONITORING SITES IN SLOVENIA 363
R 1.32. Ivan Dragičević, Ivica Pavičić, Davor Pavelić, Alan Vranjković, Daria Čupić, Siniša Širac HIDROGEOLOŠKA POTENCIJALNOST GORSKIH I PRIGORSKIH VODONOSNIKA ŽUMBERAČKOG I SAMOBORSKOG GORJA 371
R 1.33. Daria Čupić, Ivan Dragičević, Darko Mayer, Siniša Širac, Alan Vranjković, Ivica Pavičić PREGLED DOSADAŠNJIH HIDROGEOLOŠKIH ISTRAŽIVANJA JUŽNOG DIJELA ZAGREBAČKOG VODONOSNIKA 383
R 1.34. Ivan Dragičević, Tatjana Vlahović, Eduard Prelogović, Alan Vranjković, Daria Cupić, Siniša Sirac, Ivica Pavičić MOGUĆNOST ZAHVAĆANJA PODZEMNIH VODA U SREDIŠNJOJ I SJEVERNOJ ISTRI IZVAN PODRUC̆JA VELIKIH IZVORA 395
R 1.35. Mladen Kuhta, Želimir Pekaš, Natalija Matić, Željka Brkić PROJEKT ISTRA-HIDRO, ODRŽIVO UPRAVLJANJE PREKOGRANIČNIMPODZEMNIM VODAMA IZMEĐU TRŠĆANSKOG I KVARNERSKOGZALJEVA405
R 1.36. Krešimir Maldini, Damir Tomas, Natalija Matić, Simana Milović, Vinod Jena, Sapana Gupta GEOKEMIJSKE KARAKTERISTIKE ODABRANIH KRŠKIH IZVORA U ZALEĐU BIOGRADA NA MORU 411
R 1.37. Nikolina Ilijanić, Daria Cupić, Slobodan Miko, Saša Mesić, Ozren Hasan, Siniša Širac, Koraljka Bakrač, Valentina Hajek Tadesse ISTRAŽIVANJE GENEZE I PALEORAZINA VRANSKOG JEZERA NA CRESU 421
R 1.38. Nikolina Ilijanić, Slobodan Miko, Ozren Hasan, Daria Čupić, Saša Mesić, Siniša Širac, Tamara Marković, Martina Šparica Miko, Alena Vlašić PALEOLIMNOLOŠKA ISTRAŽIVANJA BAĆINSKIH JEZERA JEZERO CRNIŠEVO437
R 1.39. Melita Došen, Anica Brlek Juren, Vlado Dadić, Damir Ivanković, Romana Roje, Biserka Mladinić, Snježana Dominković Alavanja, Margareta Godrijan
IZVJEŠTAVANJE PREMA ZAHTJEVIMA OKVIRNE DIREKTIVE O MORSKOJ STRATEGIJI I VEZA S DRUGIM OKVIRNIM POLITIKAMA 447
R 1.40. Branka Grbec, Grozdan KušpilićTEMPERATURA, SALINITET I KISIK JADRANSKOG MORA U ERIKLIMATSKIH PROMJENA457
R 1.41. Vjeročka Vojvodić, Jelena Dautović, Božena Cosović, Nataša Tepić, Irena Ciglenečki-Jušić
OTOPLJENI ORGANSKI UGLJIK U JADRANU: DUGOROČNA ISPITIVANJA - MOGUĆI POKAZATELJ GLOBALNIH PROMJENA 465
R 1.42. Živana Ninčević-Gladan, Mia Bužančić, Grozdan Kušpilić, Branka Grbec, Slavica Matijević, Sanda Skejić, Ivona Marasović, Mira Morović, Dagmar Šurmanović ODGOVOR FITOPLANKTONSKE ZAJEDNICE NA ANTROPOGENIUTJECAJ U PRIOBALNOM MORU475
R 1.43. Kristina Pikelj, Suzana Ilić
INTEGRALNO UPRAVLJANJE PLAŽAMA U HRVATSKOJ 485
R 1.44. Dagmar Šurmanović, Valerija Musić ODREĐIVANJE PODRUČJA PRIJELAZNIH I PRIOBALNIH VODA POGODNIH ZA ŽIVOT I RAST ŠKOLJKAŠA 493
R 1.45. Ivana Ujević, Živana Ninčević-Gladan, Nada Krstulović, Vlado Dadić, Mira Morović, Vesna Milun, Jelena Lušić, Slaven Jozić, Nikša Nazlić, Roman Garber, Valerija Musić, Dagmar Šurmanović MONITORING FIZIKALNIH, KEMIJSKIH I BIOLOŠKIH POKAZATELJA ZA ODREĐIVANJE PODRUČJA VODA POGODNIH ZA ŽIVOT I RAST ŠKOLJKAŠA U VODAMA JADRANSKOG MORA 505
R 1.46. Grozdan Kušpilić, Jelena Lušić, Vesna Milun, Jelena Mandić, Živana Ninčević-Gladan, Nada Krstulović, Mladen Šolić, Marija Marijanović Rajčić, Dagmar Šurmanović, Daniel Gonzalez-Fernandez, Georg Hanke, Giulio Mariani, Simona Tavazzi, Gert Suurkuusk, Jacek Tronczynsky
TEMPORAL CHANGES OF CHEMICAL AND BIOLOGICAL PROPERTIES OF KAŠTELA BAY 515
R 1.47. Goran Lončar, Hrvoje Mostečak, Tea PolakNUMERIČKA ANALIZA UTJECAJA ULAZA NA IZMJENU MORA UMARINAMA JADRANA525
TEMA 2. SUSTAVI UREĐENJA I KORIŠTENJA VODA I ZEMLJIŠTA - STANJE IRAZVOJNI PROJEKTI
R 2.01. Marijan Babić, Darko Barbalić, Danko Biondić, Danko Holjević UPRAVLJANJE RIZICIMA OD POPLAVA U HRVATSKOJ535
SADRŽAJ XI.
R 2.02. Luka Vukmanić, Tomislav Majerović
REGISTAR POPLAVNIH DOGAĐAJA 545
R 2.03. Alan Cibilić, Darko Barbalić
TWINNING PROJEKT "IZRADA KARATA OPASNOSTI OD POPLAVA I KARATA RIZIKA OD POPLAVA" 553
R 2.04. Darko Barbalić, Danko Biondić, Sanja Barbalić PRETHODNA PROCJENA RIZIKA OD POPLAVA 561
R 2.05. Darko Barbalić, Danko Biondić, Tomislav Majerović, Luka Vukmanić KARTE OPASNOSTI OD POPLAVA I KARTE RIZIKA OD POPLAVA 573
R 2.06. Neven Kuspilić, Gordon Gilja, Eva Ocvirk IZRAČUN VJEROJATNOSTI POJAVE POPLAVNOG DOGAĐAJA I NJEGOVOG UTJECAJA NA POPLAVNI RIZIK 583
R 2.07. Andrej Vidmar, Katarina Zabret, Urška Hozjan, Anica Gole, Andrej Kryžanowski, Mitja Brilly NACER: MODEL PROCJENE POPLAVNIH ŠTETA 593
R 2.08. Tomislav Majerović, Luka Vukmanić PROCJENA POTENCIJALNIH FINANCIJSKIH POPLAVNIH ŠTETA NA PODRUČJU REPUBLIKE HRVATSKE KORIŠTENJEM METODE NACER 603
R 2.09. Zdenko Tadić, Diana Šustić, Branimir Barač, Antonija Barišić-Lasović, Tomislav Kržak, Igor Tadić ŠTETE OD POPLAVA NA SLIVU KARAŠICA - VUČICA 613
R 2.10. Marin Paladin. Renata Vidaković Šutić, Boris Vrcelj, Vedrana Ričković IZRADA KARATA OPASNOSTI I IZRAČUN ŠTETA NA SLIVU RIJEKE BEDNJE 627
R 2.11. Damir Bekić, Vlatko Kadić, Vedran Ivezić, Igor Kerin KARTE OPASNOSTI OD POPLAVA NA SLIVU RIJEKE KRAPINE 639
R 2.12. Dario Kolarić, Berislav Brkić HIDRAULIČKI SIMULACIJSKI MODELI SUSTAVA OBRANE OD POPLAVA SREDNJEG POSAVLJA 653
R 2.13. Dijana Oskoruš, Tatjana Vujnović, Petra Mutić, Toni Jurlina, Željka Klemar RAZVOJ HIDROLOŠKIH PROGNOZA - PILOT PROJEKT KUPE I SAVE DO SISKA - SADAŠNJOST I BUDUĆNOST 669
R 2.14. Vesna Grizelj Šimić VIŠEGODIŠNJI PROGRAM GRADNJE REGULACIJSKIH I ZAŠTITNIH VODNIH GRAĐEVINA I GRAĐEVINA ZA MELIORACIJE 2013. - 2017. 679
R 2.15. Marijan Babić, Ružica Drmić CEB PROJEKT ZAŠTITE OD POPLAVA 689
R 2.16. Dražen Sabljak
KAPITALNE INVESTICIJE U OBJEKTE ZAŠTITE OD ŠTETNOG DJELOVANJA VODA NA PODRUČJU DONJE DRAVE I DUNAVA 697
R 2.17. Sanja Filipan, Zoran Marković, Andrino PetkovićUNAPRJEĐENJE SUSTAVA ZAŠTITE OD ŠTETNOG DJELOVANJAVODA NA PODRUČJU VGO-A ZA GORNJU SAVU709
R 2.18. Katarina Ravnjak, Zlatko Juriša
ANALIZA STABILNOSTI POSTOJEĆIH SAVSKIH NASIPA U SVRHU DEFINIRANJA NJIHOVE SIGURNOSTI NA PODRUČJU VODNOGOSPODARSKOG ODJELA ZA GORNJU SAVU 719
R 2.19. Marijana Kotaran Munda, Zlatko Juriša
OBNOVA DESNOG NASIPA RIJEKE SAVE IZMEĐU NASELJA DRNEK - SUŠA I UREĐENJE OBALOUTVRDA NA 4 MJESTA NA PREDMETNOJ DIONICI 729
R 2.20. Ana Jelka Graf, Enes Obarčanin, Željko Tusić PRIPREMA PROJEKATA ZAŠTITE OD POPLAVA NA SLIVU RJEČINE 739
R 2.21. Josip Marušić, Božo GalićVIŠENAMJENSKI KANAL DUNAV-SAVA - NEOSTVARENI RAZVOJNIVODNOGOSPODARSKI I PROMETNI PROJEKT749
R 2.22. Siniša Maričić
AKUMULIRANJE VODE U SLAVONIJI 759
R 2.23. Kristijan Posavec, Vinko Jović, Berislav Brkić, Dario Kolarić, Damir Bekić
ZAGREB NA SAVI - NUMERIČKO MODELIRANJE UTJECAJA VARIJANTNIH RJEŠENJA NA PODZEMNE VODE 771
R 2.24. Renata Vidaković Sutić, Vedrana Ričković, Vedran Jurić RASPOLOŽIVE KOLIČINE VODA ZA PROIZVODNJU ELEKTRIČNE ENERGIJE NA SLIVU RIJEKE LIKE 795
R 2.25. Tanja Lubura Matković, Mladen Petričec, Tomislav Tomić, Ivana Bartolić ENERGETSKO KORIŠTENJE VODA SLIVNOG PODRUČJA RIJEKA LIKE I GACKE 805
R 2.26. Goran Gjetvaj, Jadran Berbić, Filip Gjetvaj EROZIJA HIDROTEHNIČKIH NASIPA U UVJETIMA PRELIJEVANJA PREKO KRUNE 817
R 2.27. Marija Mijatović, Jelena Kaluđer, Krunoslav Minažek, Mensur Mulabdić, Janne-Kristin Pries PRIMJENA GEOSINTETIKA U NASIPIMA ZA OBRANU OD POPLAVA 827
R 2.28. Neven Kuspilić, Gordon Gilja
UTJECAJ REGULACIJSKE PREGRADE NA TALOŽENJE SUSPENDIRANOG NANOSA 839
R 2.29. Jadran Berbić, Patricia Šišeta, Goran Lončar, Eva Ocvirk HIDRAULIČKI UVJETI U RIBLJIM STAZAMA I NUMERIČKI MODEL PRIRODNE RIBLJE STAZE 849
R 2.30. Elizabeta Kos, Miro Macan, Marija Čulinović HoljevacPROJEKTI NAVODNJAVANJA U REPUBLICI HRVATSKOJ IMOGUĆNOST SUFINANCIRANJA IZ FONDOVA EUROPSKE UNIJE859
R 2.31. Marinko Galiot, Danko Holjević, Anita Brajković, Mario Bagarić
SADRŽAJ XIII.
IMPLEMENTACIJA NACIONALNOG PROGRAMA NAVODNJAVANJA KROZ PROGRAM RURALNOG RAZVOJA 2014. - 2020. 869
R 2.32. Anita Brajković, Miroslav Čapka, Petr Plichta VODIČ ZA IZRADU STUDIJA IZVODLJIVOSTI PROJEKATA NAVODNJAVANJA KOJI SE PLANIRAJU SUFINANCIRATI KROZ EPFRR 879
R 2.33. Nenad Heček OPRAVDANOST IZGRADNJE I NAKNADA ZA KORIŠTENJE SUSTAVA NAVODNJAVANJA 885
R 2.34. Milena Moteva, Nadezhda Yarlovska, Margarita Mondeshka, Ana Stoeva, Ivan Šimunić, Velibor Spalević, Vjekoslav Tanaskovik, Marija Vukelić-Shutoska SPATIAL PLANNING AS AN APPROACH TO IMPROVING LAND AND WATER USE IN THE AGRICULTURAL AREAS 895
R 2.35. Matjaž Glavan, Marina Pintar, Janko Urbanc
CHALLENGES FOR AGRICULTURE IN THE WATER PROTECTED AREAS - THE CASE OF RIVER DRAVA PLAIN, SLOVENIA 905
R 2.36. Lidija Tadić, Marko Blagus, Sergej Cvetković, Tamara Dadić, Mišo Čičak PROVEDBA NAVODNJAVANJA NA VODNOM PODRUČJU DUNAVA I DONJE DRAVE 915
R 2.37. Mario Bagarić
UTJECAJI ZAHVATA VODE PLANIRANIH SUSTAVA NAVODNJAVANJA NA REŽIM VODA DRAVE 923
R 2.38. Enes Obarčanin, Berislav Brkić, Mijo Vranješ, Marinko Galiot HIDRAULIČKA ANALIZA NAVODNJAVANJA BIĐ-BOSUTSKOG POLJA 933
R 2.39. Marko Josipović, Lidija Tadić, Jasna Soštarić, Hrvoje Plavšić, Tamara Dadić, Monika Marković, Željko Šreng "IRRI" PROJEKT NAVODNJAVANJA - PRIMJER RAZVOJA PILOT PROJEKATA 945
R 2.40. Ivana Mihalić Fabris, Lucija Blažević, Tatjana Travica, Nikola Cvitan, Josip Rubinić RJESENJE NAVODNJAVANJA U SLIVU MIRNE KAO INSTRUMENT OSIGURANJA EKOLOSKKI PRIHVATLJIVIH PROTOKA 957
R 2.41. Ivan Šimunić, Bariša Matković, Milena Moteva, Marija Vukelić-Shutoska POTREBNA KOLIĆINA VODE ZA NAVODNJAVANJE POLJOPRIVREDNIH KULTURA - PILOT PROJEKT ČERVAR PORAT - BAŠARINKA967
R 2.42. Igor Ljubenkov, Berislav Glavaš, Živko BarbarićREKONSTRUKCIJA HIDROMELIORACIJSKOG SUSTAVA ZA BOLJEKORIŠTENJE POLJOPRIVREDNIH POVRŠINA U SINJSKOM POLJU977
TEMA 3. SUSTAVI JAVNE VODOOPSKRBE, ODVODNJE I PROČIŠĆAVANJA OTPADNIH VODA - STANJE I RAZVOJNI PROJEKTI
R 3.01. Vesna Grizelj Šimić VIŠEGODIŠNJI PROGRAM GRADNJE KOMUNALNIH VODNIHGRAĐEVINA 2014. - 2023.987

XIV.	
R 3.02.	Stjepan Kamber, Miljenko Čupić, Vedran Žabka, Dejan Pap,
	Ivana Mlinjarić, Melita Posavac
	UPRAVLJANJE PROCESIMA - PRIPREMA PROJEKATA 999

SADRŽAJ XV.
R 3.17. Slaven Dobrović, Maja Zebić Avdičević, Roko Roksandić PROVJERA RADNIH KARAKTERISTIKA ULTRAFILTRACIJSKE MEMBRANE PRI OBRADI KIŠNICE RAZLIČITE KVALITETE 1173
R 3.18. Barbara Karleuša, Primož Banovec, Ivana Radman, Nevena Dragičević
ANALIZA HRVATSKO-SLOVENSKE PREKOGRANIČNE VODOOPSKRBE U SKLOPU PROJEKTA DRINKADRIA 1183
R 3.19. Alena Vlašić, Siniša SiracPONUDA I POTRAŽNJA ZA VODOM NA ZADARSKIMOTOCIMA KAO ELEMENTI ODRŽIVOG RAZVITKA1191
R 3.20. Mara Pavelić, Zrinka Molak Milić
UREĐAJI ZA PROČIŠĆAVANJE KOMUNALNIH OTPADNIH VODA U REPUBLICI HRVATSKOJ 1201
R 3.21. Dario Ban, Lidija Car-Peti, Sonja Breka Tkalec IZAZOVI U RJEŠAVANJU IMOVINSKO - PRAVNIH ODNOSA U SKLOPU REALIZACIJE EU PROJEKTA AGLOMERACIJA ČAKOVEC 1211
R 3.22. Višnja Grubišić, Renata Kolačević, Andrino PetkovićPREGLED RAZVOJNIH PROJEKATA VODOOPSKRBE I ODVODNJE NAPODRUČJU VODNOGOSPODARSKOG ODJELA ZA GORNJU SAVU, ZAPRIJAVU KORIŠTENJA SREDSTAVA IZ FONDOVA EU1223
R 3.23. Dubravko Filipan, Mirela Šahinović RAZVOJ SUSTAVA ODVODNJE GRADA ZAGREBA NA VALU EU FONDOVA 1235
R 3.24. Dejan Kovačević, Stjepan Kordek ODVODNJA CESTOVNIH PROMETNICA 1249
R 3.25. Dejan Kovačević, Stjepan Kordek, Zvonko VargaODRŽAVANJE SUSTAVA ODVODNJE NA PROMETNICAMA1259
TEMA 4. VODNA POLITIKA, OBRAZOVANJE, VODNOGOSPODARSKO PLANI-RANJE, MEĐUNARODNA SURADNJA I SUDJELOVANJE JAVNOSTI
R 4.01. Mario Obrdalj, Tatjana Pristovnik, Darko Boto, Hrvoje Kuštrak USPOSTAVA SREDIŠNJEG SUSTAVA ZA IZVJEŠTAVANJE PREMA EU DIREKTIVAMA 1269
R 4.02. Veronika Pančić-Ruška, Tomislav Momčinović UPRAVLJANJE JAVNIM VODNIM DOBROM - GOSPODARENJE ŠUMAMA U JAVNOM VODNOM DOBRU 1283
R 4.03. Alan Cibilić, Marina Barbalić, Ivana Rubčić, Neven Trenc, Biljana Barić, Mladen Matica, Maja Turinski, Saša Cestar, Branka Spaniček, Tamara Cuković PROJEKT SEE RIVER 1291
R 4.04. Nataša Gecan, Mirjana Svonja, Danko Biondić
PROJEKT UPRAVLJANJA NERETVOM I TREBIŠNJICOM 1299
R 4.05. Barbara Karleuša, Tamara Crnko, Josip Rubinić
ISKUSTVA U PROVEDBI EU PROJEKATA DRINKADRIA I ŽIVO 1309
R 4.06. Stanislava Dodeva
SWISS SUPPORTED WATER PROJECTS IN MACEDONIA 1317
R 4.07. Rudy Rossetto, Laura Foglia, Iacopo Borsi, Irena Kopač
FREEWAT - OPEN SOURCE INTEGRATED MODELLING
ENVIRONMENT (SURFACE AND GROUNDWATER)1327
R 4.08. Andrej Meglič, Gorazd Lakovič, Tinkara Rozina, Anita Klančar, Jurij Trontelj, Albin Kristl, Robert Roškar, Neža Finžgar, Maja Zupančič Justin, Marko Gerl SUCCESSFUL REDUCTION OF PHARMACEUTICALS AND HERBICIDES FROM WATER: FIRST LABORATORY - SCALE RESULTS OF LIFE PharmDegrade PROJECT
R 4.09. Tinkara Rozina, Andrej Meglič, Gorazd Lakovič, Marko Gerl, Domen Leštan, Maja Zupančič Justin, Neža Finžgar, Bojan Sedmak REAL-TIME PHYTOPLANKTON QUANTIFICATION USING CHLOROPHYLL "A" AND PHYCOCYANIN FLUORESCENCE SENSORS 1345
R 4.10. Jelena Radošević
PROJEKT SUSAN 1355
R 4.11. Josip Marušić, Danko Holjević
OSNOVNI POKAZATELJI O PET HRVATSKIH
KONFERENCIJA O VODAMA1363
R 4.12. Desanka Sarvan
NORMATIVNI SADRŽAJ I PRAVNI IZVORI LJUDSKOG PRAVA NA VODU 1377
R 4.13. Enes Ćerimagić, Tomislav Domes, Anka Kekez Koštro, Tomislav Tomašević OD BIROKRATSKOG DO PARTICIPATIVNOG UPRAVLJANJA VODNIM USLUGAMA U HRVATSKOJ 1383
R 4.14. Ivana Gudelj, Lidija Runko Luttenberger, Ankica Senta MarićPOSLJEDICE KOJIMA REZULTIRA PRIVATIZACIJA VODNO-KOMUNALNIH USLUGA1391
R 4.15. Josip Marušić
HIDROTEHNIČKI PREDMETI U NASTAVNIM PROGRAMIMA GRAĐEVINSKIH FAKULTETA SVEUČILIŠTA U HRVATSKOJ 1399
R 4.16. Nevenka Ožanić, Nataša Jakominić Marot
ISKUSTVA U PROVEDBI EU PROJEKTA - RAZVOJ ISTRAŽIVAČKE INFRASTRUKTURE NA KAMPUSU SVEUČILIŠTA U RIJECI 1409
R 4.17. Nevenka Ožanić, Elvis Žic, Ivana Sušanj, Vanja Travaš, Igor Ružić, Nevena Dragičević, Nino Krvavica ZNANSTVENA OPREMA I MOGUĆNOSTI ISTRAŽIVANJA NA GRAĐEVINSKOM FAKULTETU U RIJECI 1425
KAZALO AUTORA 1445

ZNANSTVENA OPREMA I MOGUĆNOSTI ISTRAŽIVANJA NA GRAĐEVINSKOM FAKULTETU U RIJECI

Nevenka Ožanić, Elvis Žic, Ivana Sušanj, Vanja Travaš, Igor Ružić, Nevena Dragičević, Nino Krvavica

Abstract

SAŽETAK : Građevinski fakultet Sveučilišta u Rijeci je kroz dva projekta: Međunarodnog hrvatsko-japanskog znanstvenog projekta „Identifikacija rizika i planiranje korištenja zemljišta za ublažavanje nepogoda kod odrona zemlje i poplava u Hrvatskoj" (Risk Identification and Land Use Planning for Disaster Mitigation of Landslides and Floods in Croatia) te EU projekta ''Razvoj istraživačke infrastrukture na Kampusu Sveučilišta u Rijeci" (Research Infrastructure for Campus-based Laboratories at the University of Rijeka) dobio značajnu količinu znanstveno-istraživačke opreme, te veći broj znanstvenih novaka i laboranata za rad u laboratorijima. Dobivena znanstveno-istraživačka oprema već je većim dijelom u funkciji, a rezultati istraživanja sadržani su u doktorskim i znanstvenim radovima objavljenim u domaćim i inozemnim časopisima svrstanim u svjetski priznatim znanstvenim bazama. U ovom radu su prikazani dosadašnji rezultati, kao i mogućnosti korištenja dobivene znanstvene opreme na Građevinskom fakultetu Sveučilišta u Rijeci s posebnim naglaskom na znanstvenu opremu u Laboratoriju za hidrotehniku.

KLJUČNE RIJEČI: Međunarodna suradnja, EU projekti, Znanstvena oprema, Istraživanja, Laboratorij za hidrotehniku

SCIENTIFIC EQUIPMENT AND RESEARCH POSSIBILITIES AT THE FACULTY OF CIVIL ENGINEERING OF THE UNIVERSITY OF RIJEKA

SUMMARY: The Faculty of Civil Engineering of the University of Rijeka has obtained a significant quantity of scientific research equipment and large number of research and laboratory assistants based on two projects, the international Croatian-Japanese scientific project Risk Identification and Land Use Planning for Disaster Mitigation of Landslides and Floods in Croatia and the EU project Research Infrastructure for Campus-based Laboratories at the University of Rijeka.
The obtained scientific research equipment is already largely in use, and the research results are contained in doctoral theses and research papers published in domestic and international journals and integrated into globally acclaimed scientific databases.
The paper will analyse the results to date and possible uses of the obtained equipment at
the Faculty of Civil Engineering of the University of Rijeka, with a special emphasis on the scientific equipment of the Hydro-engineering Laboratory.
KEY WORDS: International cooperation, EU projects, Scientific equipment, Research, Hydro-engineering Laboratory

1. UVOD

Svrha ovoga rada je dati prikaz aktivnosti provedenih kroz Međunarodni hrvatskojapanski projekt „Identifikacija rizika i planiranje korištenja zemljišta za ublažavanje nepogoda kod odrona zemlje i poplava u Hrvatskoj" (Risk Identification and Land-Use Planning for Disaster Mitigation of Landslides and Floods in Croatia) i strukturni EU projekt ''Razvoj istraživačke infrastrukture na Kampusu Sveučilišta u Rijeci", kao i praktičnu primjenu rezultata istraživanja dobivenih korištenjem znanstvene opreme nabavljene u okviru spomenutih projekata.
Poseban je naglasak stavljen na dosadašnje rezultate do sada provedenih znanstvenih istraživanja i na mogućnosti korištenja dobivene znanstvene opreme instalirane na Građevinskom fakultetu Sveučilišta u Rijeci, odnosno znanstvene opreme u Laboratoriju za hidrotehniku Građevinskog fakulteta.

2. ZNANSTVENA OPREMA I MOGUĆNOSTI ISTRAŽIVANJA NA GRAĐEVINSKOM FAKULTETU U RIJECI

2.1. Međunarodni hrvatsko-japanski projekt

Pojave poplava, blatnih tokova i aktivnih klizišta, uspostava njihova monitoringa, sustavi ranog upozoravanja za poplave i klizišta prilagođeni hidrološkim i geološkim uvjetima na tim područjima, definiranje zona hazarda metodama procjene osjetljivosti i hazarda na osnovi lokalnih geoloških uvjeta dio su istraživačkih aktivnosti usmjerenih ka ublažavanju i prevenciji budućih katastrofalnih događaja na nekom prostoru. Upravo su te aktivnosti bile obuhvaćene bilateralnim hrvatsko-japanskim, znanstveno-istraživačkim projektom „Identifikacija rizika i planiranje korištenja zemljišta za ublažavanje nepogoda kod odrona zemlje i poplava u Hrvatskoj" (Risk Identification and Land-Use Planning for Disaster Mitigation of Landslides and Floods in Croatia).
Projekt je pokrenut 2008. godine, kada je izabran na natječaju kao jedan od projekata u programu „Znanstveno i tehnološko istraživačko partnerstvo za održivi razvoj" (Science and Technology Research Partnership for Sustainable Development, SATREP) kojega financiraju Japanska agencija za znanost i tehnologiju (Japan Agency for Science and Technology-JST) i Japanska agencija za međunarodnu suradnju (Japan International Cooperation Agency-JICA). U okviru SATREP programa omogućeno je zajedničko istraživanje japanskih i hrvatskih znanstvenika, a iz programa se financiraju troškovi međunarodne razmjena istraživača i donira se oprema za implementaciju aktivnosti projekta. Japanske partnerske institucije u projektu su Sveučilište u Niigati (The Research Center for Natural Hazards and Disaster Recovery), Sveučilište u Kyotu (Disaster Prevention Research Institute, DPRI) i neprofitna organizacija Međunarodni konzorcij za klizišta (International Consortium on Landslides, ICL). Projekt je sufinanciran i nadziran od strane Ministarstva znanosti, obrazovanja i sporta Republike Hrvatske.

Hrvatske partnerske institucije u projektu su tri hrvatska sveučilišta, Sveučilište u Rijeci (Građevinski fakultet), Sveučilište u Zagrebu (Rudarsko-geološko-naftni fakultet i Agronomski fakultet) i Sveučilište u Splitu (Građevinsko-arhitektonski fakultet), kao i Hrvatski geološki institut. Vrijednost projekta je oko 4 milijuna USD uz duljinu trajanja od 5 godina, a u njemu sudjeluju istraživači iz Japana i iz Hrvatske. Voditelj projekta sa japanske strane je prof. dr. sc. Hideaki Marui iz Sveučilišta u Niigati, a voditelj sa hrvatske strane je prof. dr. sc. Nevenka Ožanić sa Sveučilišta u Rijeci. Aktivnosti projekta provedena su na pilot područjima u blizini gradova gdje su smještena tri partnerska hrvatska sveučilišta, tj. u Rijeci, Zagrebu i Splitu kroz više grupa istraživanja i analiza: identifikacija i kartiranje klizišta, sustavni složeni monitoring klizišta, ispitivanje fizičkih i mehaničkih svojstava tala i stijena, modeliranje dinamike klizanja tla, modeliranje propagacije poplavnih valova i blatnih tokova, kontinuirani monitoring toka sedimenata, zoniranje osjetljivosti i hazarda klizanja, uspostavljanje sustava ranog upozoravanja i razvoj mjera ublažavanja rizika kroz sustav prostornog uređenja. Neophodnu mjernu laboratorijsku i terensku opremu za istraživanja donirala je Vlada Japana.
Aktivnosti su bile organizirane u četiri radne grupe (WG4 za područje Splita). U okviru Radne grupe za klizišta (WG1) provedene su aktivnosti sustavnog složenog monitoringa klizišta u realnom vremenu, laboratorijske analize uzoraka tla, te numeričke analize ponašanja klizišta u statičkim i dinamičkim uvjetima na odabranim klizištima.
U okviru Radne grupe za poplave i blatne tokove (WG2) aktivnosti su bile vezane uz sustavna opažanja meteoroloških i hidroloških parametara na predviđenim slivnim područjima i koritima vodotoka (rijekama, bujicama i drugo) u realnom vremenu, numeričke i hidrološke analize mjerenih parametara, te izradu simulacijskih modela poplava, blatnih tokova i tečenja na analiziranim područjima za potrebe izrade sustava ranog upozoravanja na spomenute pojave, a sve prilagođeno hidrološkim i geološkim uvjetima u Hrvatskoj.
Aktivnostima Radne grupe za kartiranje hazarda za primjenu u prostornom planiranju (WG3) bio je obuhvaćen razvoj inventara klizišta pomoću tehnika daljinskih istraživanja, te razvoj metoda analize i zoniranja hazarda klizanja.
U studenom 2010., prosincu 2011., ožujku 2013. i prosincu 2013. godine u Hrvatskoj su organizirane znanstvene radionice projekta sa svrhom diseminacija rezultata projekta između članova projektnih timova, ali i znanstvenika iz drugih institucija iz regije. Radionice su doprinijele i uspostavljanju regionalne suradnje, što je značajno za održivost rezultata Projekta i nakon što je isti završio u ožujku 2014. kada je održana Svečana ceremonija zatvaranja hrvatsko-japanskog znanstvenog projekta u Ministarstvu znanosti obrazovanja i sporta Republike Hrvatske, Gradskoj vijećnici u Zagrebu, te svečano primanje u Rezidenciji japanskog ambasadora u Zagrebu.

2.2. Projekt Europskog fonda za regionalni razvoj

Sveučilištu u Rijeci odobreno je financiranje projekta ''Razvoj istraživačke infrastrukture na Kampusu Sveučilišta u Rijeci" u iznosu od 100% traženih sredstava odnosno oko 180 milijuna kuna prema Odluci Ministarstva znanosti, obrazovanja i sporta Republike Hrvatske od 6. ožujka 2014. godine, a koja je bila temelj za potpisivanje Ugovora o dodjeli bespovratnih sredstava.
Ugovor za spomenuti projekt vrijedan oko 180 milijuna kuna, od čega doprinos Europskog
fonda za regionalni razvoj iznosi oko 153 milijuna kuna (85\%), a nacionalni doprinos oko 27 milijuna kuna (15\%) potpisan je 18. travnja 2014. godine. Projekt je prihvaćen u okviru Operativnog programa Regionalna konkurentnost 2007. - 2013. U tijeku je javna nabava znanstvene opreme za četiri centra s pripadajućim laboratorijima i to za: Centar za visokopropusne tehnologije u biomedicini, Centar za mikro i nano znanosti i tehnologije, Centar za napredno računanje i modeliranje, te za laboratorije Građevinskog fakulteta. Nositelj Projekta je Sveučilište u Rijeci, koje kao središnja obrazovna i istraživačka ustanova u Primorsko-goranskoj županiji, ovim projektom želi unaprijediti istraživačku infrastrukturu centara ilaboratorija koji djeluju na Sveučilišnom Kampusu. Usvim centrima nabavka opreme osigurat će implementaciju novih metodologija i tehnologija u inter i multidisciplinarnim područjima znanosti i istraživanja s ciljem povećanja istraživačkih kapaciteta Sveučilišta. Navedene aktivnosti omogućit će postizanje izvrsnosti u razvoju, inovacijama i istraživanju u Republici Hrvatskoj, te smanjiti regionalne nejednakosti u razini znanstvene, istraživačke i obrazovne infrastrukture. Oprema će omogućiti povećanje broja sveučilišnih projekata temeljenih na znanju. Poduzete aktivnosti osigurat će prisutnost na tržištu čime će projekt dobiti održivu komponentu. Trajanje projekta je 12 mjeseci, što uključuje nabavu opreme, umjeravanje, edukaciju djelatnika, prilagodbu prostora i reviziju.
Od ukupno predviđenih sredstava, Građevinskom fakultetu u Rijeci namijenjeno je gotovo 55 milijuna kuna. Sredstva su najvećim dijelom namijenjena za nabavku opreme, no manji dio namijenjen je prilagodbi prostora za prihvat iste. Opremanjem laboratorija na Građevinskom fakultetu dobit će se veliki spin-off potencijal i doprinos za građevinski sektor. Usluge laboratorija će uključivati u prvom redu usluge koje su specifične za polje građevinarstva i temeljnih tehničkih znanosti pogotovo u krškim područjima, istraživanja inovativnih građevinskih materijala i slično, te korištenje složenih 3D modela za istraživanja u građevinskom inženjerstvu u suradnji sa Centrom za napredno računanje i modeliranje. Laboratoriji Građevinskog fakulteta koji su uključeni u projekt su: Hidrotehnički laboratorij, Geotehnički laboratorij, Laboratorij za prometnice, Laboratorij za konstrukcije i Laboratorij za materijale.

3. DOSADAŠNJI REZULTATI HIDROTEHNIČKIH ISTRAŽIVANJA

3.1. Rezultati istraživanja na području srednjeg i donjeg toka Rječine

Istraživanja u sklopu spomenutih projekata (Međunarodnog hrvatsko-japanskog projekta i sveučilišnog projekta) obuhvaćala su razmatranja različitih teorijskih i praktičnih aspekata modeliranja poplavnih valova i tokova krupnozrnatog nekoherentnog (eng. Debris flow) i sitnozrnatog koherentnog materijala (eng. Mud flow, Earth flow), kao jednih od značajnijih mogućih prirodnih pojava na srednjem i donjem toku vodotoka Rječine (Benac i drugi, 2010; Perić, 2007; Žic, 2015; Takahashi, 2007).
Istraživanja i rezultati sprovedeni unutar znanstvenog projekta detaljno su obrazloženi u doktorskom radu Elvisa Žica - Prilog modeliranju potencijalnih poplavnih tokova i tokova krupnozrnatog materijala u slivu Rječine, obranjenom na Građevinskom fakultetu Sveučilišta u Rijeci. Temeljeni su na prikupljenim meteorološkim, hidrološkim i geotehničkim podacima, te rezultatima matematičkih i fizikalnih modela za različite scenarije kretanja poplavnih vodnih valova, propagacije toka krupnozrnatog i sitnozrnatog
materijala na srednjem i donjem toku Rječine, na području od akumulacije Valići do urbanog dijela grada Rijeke uključujući i moguće scenarije posljedica tih aktivnosti (Žic, 2015).

Baza ulaznih terenskih podataka sadržavala je osnovne informacije o postojećem stanju područja klizišta Grohovo i vodotoka Rječina, uključujući njihovu prirodu, veličinu, lokaciju i povijest, sve dostupne podatke o prethodnim istraživanjima (fotografije, povijesne spise, izvještaje, povratne analize područja i slično), te podatke u realnom vremenu sa instaliranih mjernih uređaja (meteoroloških stanica na brani Valići i klizištu Grohovo, Mini i Baro Diver instrumenata, ombrografa, limnigrafa, ADCP mjerača protoka (eng. Acoustic Doppler current profiler) i slično) za praćenje promjena na analiziranoj lokaciji (Slika 1.).
U okviru istraživanja provedeno je 2D numeričko modeliranje poplavnih valova i tokova krupnozrnatog materijala primjenom SPH 2D simulacijskog programa na bazi SPH (eng. Smoothed Particle Hydrodinamics) metode i SOLFEC (eng. Solver for Finite Element Computation) simulacijskog programa na bazi neglatke kontaktne mehanike (eng. Non Smooth Contact Dynamics - NSCD), te GIS (eng. Geographic Information System) tehnologije. Na osnovi ulaznih hidroloških i geoloških podataka kreirani su numerički modeli tečenja nevezanog krupnozrnatog i sitnozrnatog materijala. Pri izradi numeričkih modela primijenjene su najčešće korištene empirijske metode erozijskih zakona (erozijski zakon po Egashiri, Voellmyu, Hungru), a predložen je i novi erozijski zakon koji je dao bolja rješenja u pogledu dosega propagacije krupnozrnatog materijala, kao i mjerodavnije vrijednosti erozijskog djelovanja uzduž toka korita Rječine (Žic, 2015; Žic i drugi, 2015). U sklopu istraživanja analizirane su i definirane smjernice za analizu hazarda i rizika od djelovanja poplava, te tokova krupnozrnatog i sitnozrnatog materijala na ispitivanom području. Uz pomoć dobivenih simulacijskih prikaza toka krupnozrnatog i sitnozrnatog materijala kvantificiran je vjerojatan volumen deponiranog materijala, brzine toka, dubine deponiranog materijala, kao i doseg toka takvih tipova tečenja za nekoliko mogućih scenarija katastrofalnih pojava (Žic, 2015) (Slika 2.).
Predmetne analize omogućile su kvantifikaciju pojedinih ulaznih parametara koji iniciraju nastanak tokova krupnozrnatog i sitnozrnatog materijala. Odnosi definiranih parametara omogućuju uspostavljanje korelacija između geomorfoloških i hidrogeoloških uvjeta, te specifičnosti terenskih uvjeta s parametrima tla karakterističnim za nastanak tokova krupnozrnatog i sitnozrnatog materijala. Definiranjem kritičnih geomorfoloških i hidrogeoloških parametara tla koji uvjetuju pojavu tokova krupnozrnatog i sitnozrnatog materijala na flišnom području omogućena je procjena hazarda i mjere za ublažavanje hazarda. Pritom je provedena gruba analiza rizika na srednjem i donjem toku Rječine, pri čemu su definirani glavni elementi rizika (Vivoda i drugi, 2012; Žic, 2015; Žic i drugi, 2014). Dodatno su opisani uzroci mogućih nastanka analiziranih prirodnih hazarda, te smjernice za njihovu sanaciju i očuvanje od posljedica mogućih hazarda u budućnosti.
U sklopu istraživanja na bilateralnom hrvatsko-japanskom projektu, a za potrebe dobivanja ulaznih geoloških parametara za kreiranje numeričkih modela propagacije toka krupnozrnatog materijala i njihovu verifikaciju izrađen je fizikalni model propagacije toka krupnozrnatog materijala u Ujigawa hidrotehničkom laboratoriju (Kyoto Sveučilište). Izrađeno je i nekoliko fizikalnih modela s različitim frakcijama krupnozrnatog i sitnozrnatog materijala pri različitim kutevima nagiba hidrauličkog žlijeba kroz koji se
propagira takav materijal, a rezultati provedenih eksperimenata su objavljeni u radovima (Žic i drugi, 2013).

Slika 1. Karta instaliranih mjernih uređaja na području klizišta Grohovo

Slika 2. Simulacijski prikaz klizanja materijala u akumulaciju Valići i formiranje poplavnog vala nakon prelijevanja preko krune brane, SPH metoda

3.2. Istraživanja vezana uz jednodimenzijski numerički model uslojenog tečenja plitkih voda u izrazito stratificiranim ušćima

Ušće Rječine se nalazi u središtu grada Rijeke, gdje Rječina utječe u Jadransko more. Za razliku od sličnih ušća na području Mediterana, ovo je vrlo specifično područje, prvenstveno zbog kratke duljine ušća, izraženih sezonskih, ali i dnevnih oscilacija protoka, te korita sa strmim nagibom dna. Plimne oscilacije u Jadranskom moru su mješovitog tipa, s jednom ili dvije izmjene plime i oseke tijekom dana. Poznato je da se na ušćima rijeka u takvom okruženju formira slani klin, kojeg karakterizira izrazita vertikalna stratificiranost, odnosno gornji sloj slatke vode koji teče iznad donjeg sloja slane vode odijeljenih oštrom granicom (Hansen i drugi, 1966; Ibanez i drugi, 1997).
S ciljem detaljnijeg proučavanja fizikalnih procesa na ušću Rječine, od početka 2012. godine provode se kontinuirana mjerenja vertikalnih profila saliniteta i brzine vode (Krvavica i drugi, 2012). Duž priobalnog dijela korita Rječine, od samog ušća do mosta Školjić udaljenog 630 m od obalne linije, definirano je 8 mjernih profila na približno jednakim udaljenostima. Prilikom mjerenja korištene su CTD sonde koje mjere tlak, temperaturu i specifičnu vodljivost vode (Slika 3.). Primjer izmjerenih vrijednosti vodljivosti vode na četiri karakteristična profila prikazan je na slici 4. Pored navedenih sondi, korišten je i akustični brzinomjer (ADCP) kako bi se izmjerile brzine i protoci neposredno uzvodno i duž slanog klina (Slika 3.,b).
Vertikalna struktura saliniteta i gustoće, izračunata je pomoću poznatih empirijskih izraza Fofonoff i drugi, 1983) na osnovu izmjerenih vrijednosti temperature i vodljivosti vode. Na slici 5.,a, prikazan je uzdužni presjek ušća Rječine s interpoliranim vrijednostima saliniteta. Provedena mjerenja pri različitim protocima i razinama mora upućuju na činjenicu kako je na ušću Rječine prisutna izrazita vertikalna stratifikacija saliniteta i gustoće vode, čime je potvrđena prisutnost slanog klina. Također, regresijskom analizom je pronađena zavisnost duljine slanog klina o protoku Rječine, zasebno za nisku i visoku razinu mora (Slika 5.,b).

Slika 3. Korišteni mjerni uređaji: a) CTD sonda, b) ADCP uređaj, c) manji ADCP uređaj na plovilu

(a)

(b)

Slika 5. (a) primjer uzdužnog presjeka ušća Rječine s izračunatim i interpoliranim vrijednostima saliniteta na osnovu provedenih mjerenja, (b) regresijske funkcije zavisnosti duljine slanog klina o protoku Rječine za vrijeme plime i oseke

Pri malim protocima ($Q<5 \mathrm{~m}^{3} / \mathrm{s}$) slani klin prodire do posljednjeg uzvodnog mjernog profila, gdje je daljnje napredovanje onemogućeno pridnenim pragom u koritu. Kako se protok povećava, slatka voda postepeno potiskuje slani klin nizvodno prema ušću. Pri protocima većima od $28 \mathrm{~m}^{3} / \mathrm{s}$ za vrijeme oseke, odnosno $38 \mathrm{~m}^{3} / \mathrm{s}$ za vrijeme plime, slatka voda gotovo u potpunosti istisne slani klin izvan korita rijeke. Pri konstantnom protoku, slani klin prodire uzvodno za vrijeme izdizanja morske razine, dok se za vrijeme spuštanja morske razine, slani klin povlači nizvodno prema ušću. Također se pokazalo kako na očuvanje vertikalne stratificiranosti, plimne oscilacije imaju znatno manji utjecaj od protoka rijeke. Naime, vertikalna struktura zadržava izrazitu stratificiranost tijekom dana sve do protoka većih od $25 \mathrm{~m}^{3} / \mathrm{s}$, kada uslijed znatnih posmičnih naprezanja na razdjelnici, dolazi do jačeg turbulentnog miješanja i narušavanja stabilnosti granice među slojevima (Krvavica i drugi, 2012).
U narednom razdoblju, na istom istraživačkom području, planiraju se detaljnija mjerenja vertikalnih profila saliniteta i brzina tijekom punog ciklusa izmjene plime i oseke, kao i pri izraženijim nestacionarnim uvjetima na ušću Rječine. Izmjerene vrijednosti s terena se planiraju usporediti s numeričkim modelima, te se posebna pozornost planira posvetiti proučavanju fizikalnih procesa na izrazito stratificiranim ušćima, pri čemu se prvenstveno misli na procese i uvjete pri kojima dolazi do miješanja među slojevima.

3.3. Rezultati istraživanja na dinamici žala

U doktorskom radu „Dinamika žala u području Kvarnera" kojeg je izradio Igor Ružić, prvi puta je detaljno objašnjena interakcija između destruktivnog djelovanja valova i morskih struja, te dotoka voda iz krškog zaleđa na erozijsko-akumulacijske procese na obali, u specifičnim uvjetima hrvatskog područja Jadranskog mora. Dokazana je složena međuovisnost između protoka, erozije i akumulacije sedimenata, te utjecaja valova, odnosno njihova osjetljiva geodinamička ravnoteža. Jednako je tako dokazana međuovisnost nazadovanja klifa u gotovo četrdesetgodišnjem razdoblju i povećanja tijela žala, te uzroci obrušavanja stijenske mase i objašnjen je geotehnički model pojava nestabilnosti. Primijenjene metode mjerenja i dobiveni rezultati imati će široku promjenu u hidrotehničkom i geotehničkom inženjerstvu.
Primjerice, žalo Klančac kod Brseča je šljunkovito minijaturno žalo dugačko 37 m , dok mu širina varira od 0 do 20 metara ovisno o eroziji i akumulaciji sedimenata duž obale žala. Veličina zrna na površini žala varira od 2 do 45 mm . Morfološke promjene žala izaziva djelovanje valova iz sjeveroistočnog (NE) i jugoistočnog (SE) kvadranta, te povremeno otjecanje bujičnog vodotoka (Slika 6.). Na žalu Klančac dolazi do čestih migracija zrna žala, odnosno značajnih morfoloških promjena tijela žala zbog koncentracije energije loma valova neposredno ispred i na samom tijelu žala (Carter i drugi; Pedrozo-Acuña i drugi, 2006). Mjerenja topografije žala i okolnog priobalja provedena su korištenjem „structure-from-motion" (SfM) fotogrametrije. SfM fotogrametrija generira fotorealistične trodimenzionalne oblake točaka viske preciznosti iz niza fotografija (DGU, 2015; James i drugi; James i drugi 2013; Ružić, 2014; Ružić i drugi, 2013; Ružić i drugi, 2014; Westoby i drugi, 2012).

Slika 6. Žalo Klančac pokraj Brseča; 1-Povremeno otjecanje bujičnog vodotoka; 2 Špilja; 3 - Šljunkovito žalo

Na slici 7. prikazan je trodimenzionalni oblak točaka i promjene poprečnih presjeka žala Klančac od 4. listopada do 27. prosinca 2013. godine. Promjene poprečnih i uzdužnih presjeka su značajne i prostorno varijabilne, nastaju brzo i trodimenzionalnog su karaktera zbog čega ih nije moguće pratiti preko karakterističnih poprečnih presjeka, kao kod dugačkih pješčanih žala, već je potrebno pratiti čitavo tijelo žala pomoću trodimenzionalnih oblaka točaka (Ružić, 2014).

Slika 7. Trodimenzionalni foto-realistični oblak točaka i slojnice derivirane iz oblaka točaka žala Klančac. Mjerenja: 1 (4. listopada), 2 (30. listopada), 3 (6. studenog.), 4 (12. studenog), 5 (18. studenog), 6 (28. studenog), 7 (4. prosinca), 8 (24. prosinca), 9 (27. prosinca)

Preciznost trodimenzionalnih oblaka točaka na minijaturnom žalu Klančac je bolja od \pm 5 cm (Ružić, 2014b), što je višestruko manje od zabilježenih promjena žala prikazanih na slici 6. Primjena SfM fotogrametrije na minijaturnim žalima je brza, jeftina i efikasna, no mjerenja nije moguće obaviti u slučajevima nepovoljnog osvjetljenja, pa obrada trodimenzionalnih oblaka točaka dobivenih SfM fotogrametrijom može biti izrazito složena (James i dr. 2012).
U sklopu EU projekta ''Razvoj istraživačke infrastrukture na Kampusu Sveučilišta u Rijeci", Građevinskom fakultetu u Rijeci omogućeno je korištenje: 3D skenera (Faro, Focus 3D X 130), GPS uređaja spojenog na CROPOS (DGU, 2015) sustav (Topcon, dvofrekvencijski GPS/GLONASS Hiper SR), plovećeg laboratorija i ADCP uređaja (Nortek, AWAC i Aquadopp Profiler). U razdoblju od 4. listopada do 27. prosinca 2013. godine zabilježene su značajne oscilacije volumena žala, u rasponu od 137 do 225 m^{3}, iznad srednje morske razine (Ružić 2014b). Oko 40% tijela žala bilo je erodirano i akumulirano u podmorju neposredno ispred žala, što ima značajan utjecaj na obalne procese žala Klančac. Do sada taj dio žala ispod razine mora nije mogao biti snimljen, a time niti istražen. Primjenom plovećeg laboratorija i GPS uređaja moći će se mjeriti migracije sedimenata žala ispod površine mora. Korištenjem 3d skenera povećat će se preciznost snimanja topografije minijaturnog žala na 2 mm , što će omogućiti detaljno praćenje karakteristika sedimenta žala, te provođenje mjerenja u uvjetima nedovoljnog osvjetljenja. Na slici 8. prikazani su trodimenzionalni oblaci žala Klančac izmjereni pomoću 3D skenera (Faro). Na detalju 3D oblaka točaka tijela žala prikazani su snimljeni geometrijski parametri zrna žala na površini, što će omogućiti analize promjena veličina zrna žala.
Obalni procesi na žalu determinirani su parametrima valova koji djeluju na žalo, kako dubokovodnih, tako i transformiranih na samom tijelu žala. Jedan od važnijih, a na našoj obali nedovoljno istraženih parametara valova je i spektar valova, pogotovo dužina vjetrovnih valova zbog specifične morfologije priobalja. Primjena ADCP uređaja nabavljenih preko projekta ''Razvoj istraživačke infrastrukture na Kampusu Sveučilišta u Rijeci" omogućit će točnije mjerenje parametara vala i njihov utjecaj na obalne procese žala.

Slika 8. Trodimenzionalni oblak točaka žala Klančac (čitavo žalo i detalj na tijelu žala) mjereni pomoću $3 D$ skenera FARO

3.4. Hidrološka istraživanja te izrada hidrološkog modela na slivu Slanog potoka

U geografskom smislu Vinodolska dolina je jedinstvena prostorna cjelina između Križišća na sjeverozapadu i Novog Vinodolskog na jugoistoku te primorja uz Vinodolski kanal (Slika 9.). Zbog svoje složene geološke građe i izraženog strmog sjeverno-istočnog poprečnog presjeka doline, ovo je područje izloženo eroziji, lokalnim klizištima i bujičnim vodotocima (Benac i drugi, 2006; Grimani i drugi; Županijski zavod za razvoj, prostorno uređenje i zaštitu okoliša, 2004). Na tom se području nalaze dva glavna vodena toka koja se ulijevaju u Jadransko more, i to Dubračina u Crikvenici i Novljanska Ričina u Novom Vinodolskom. Sliv Dubračine je svojom neposrednom površinom i vodnom bilancom najveći i najznačajniji vodotok (Ružić i drugi, 2010; Sušanj i drugi, 2012). Predmet detaljnih istraživanja izabrana je pritoka Slani potok i u manjoj mjeri Mala Dubračina, čiji su slivovi u najvećoj mjeri zahvaćeni procesima erozije (Slika 5.1.2.) (Benac i drugi, 2006).

Detaljni monitoring spomenutog područja započeo je instalacijom istraživačke opreme 2011. godine financirane sa strane međunarodnog hrvatsko-japanskog znanstvenog projekta Identifikacija rizika i planiranje korištenja zemljišta za ublažavanje nepogoda kod odrona zemlje i poplava u Hrvatskoj (Risk Identification and Land Use Planning for Disaster Mitigation of Landslides and Floods in Croatia), a uspješno se nastavlja uz pomoć EU projekta ''Razvoj istraživačke infrastrukture na Kampusu Sveučilišta u Rijeci" (Research Infrastructure for Campus-based Laboratories at the University of Rijeka). Cilj istraživanja je kontinuirano praćenje meteoroloških i hidroloških podataka sa najugroženijeg područja na slivu rijeke Dubračine: Sliva Slanog potoka. Na slivu su instalirane dvije automatske meteorolološke postaje (Davis Vantage Pro2) s 10-minutnim mjernim korakom, tlačne sonde (Schlumberger Mini Diver) za mjerenje dubine vode, te piezometri za mjerenje razine podzemne vode s 2-minutnim korakom mjerenja.
Kako bi se identificiralo trenutno stanje sliva rijeke Dubračine, izrađen je Katalog pritoka rijeke Dubračine unutar Geografskog Informacijskog Sustava (GIS) uz pomoć Arc GIS 10.1. programskog paketa. Istraživanje za potrebe rada je podijeljeno u nekoliko glavnih grupa aktivnosti. Prva grupa aktivnosti bila je prikupljanje postojećih podataka i dokumentacije o istražnom području, kao što su karte, fotografije, projekti sanacije, istražni elaborati i slično. Nakon toga, uslijedila je druga grupa aktivnosti koja je obuhvatila istraživanje provedeno na samom terenu (,,on-site") analizom stanja pritoka

Slika 9. Smještaj slivnih područja Dubračine i Suhe Ričine Novljanske

Slika 10. Lokacija slivova pritoka Dubračine - Slani potok i Mala Dubračina
rijeke Dubračine i popunjavanjem pripremljenog obrasca, izradom fotodokumentacije stanja sliva i korita svake pritoke zasebno, te usporedba postojećih podataka s onima prikupljenima na terenu. Kao završna aktivnost u fazi istraživanja provedena je reorganizacija do sada objedinjenih podataka prema unaprijed definiranoj klasifikaciji (hidrološki, geološki, pokrov zemljišta, namjena zemljišta, ...) (Marquardt, 1963; Sušanj i drugi, 2013). Nakon klasifikacije prikupljenih podataka, istovrsni podaci formirani u skupine su s geografski pridruženim koordinatama prikazani kao slojevi („layer") u programskom paketu Arc GIS 10.1, kako bi tvorili organiziranu i koreliranu bazu podataka (Tablica 1.).
Tablica 1. Primjer postojećih podataka i podataka dobivenih istraživanjem

Sliv Slanog potoka je u velikoj mjeri zahvaćen erozijom, lokalnim klizištima i bujičnog je karaktera, pa je upitna mogućnost trajne sanacije područja velikog gotovo 4,00 ha. Analizirani sliv spada u male slivove (oko $2,00 \mathrm{~km}^{2}$) koji se zbog geološke građe, te velikog nagiba (srednji nagib sliva je 22%, nagibi se kreću u rasponu od 5\% do 100\%) odlikuje vrlo kratkim vremenom koncentracije sliva, te velikim koeficijentom otjecanja u zimskom periodu koji je u ljetnom periodu značajno umanjen bujanjem vegetacije (Ružić i drugi, 2010). Kompleksnost sliva otegotni je faktor pri izraditi odgovarajućeg matematičkog determinističkog modela, pa je u ovom slučaju primijenjen „black box" model. Kako bi model ispunio svoj krajnji cilj, preciznost modela predviđanja, u tu je
svrhu razvijen model baziran na upotrebi Umjetne neuronske mreže (UNM model). UNM model je razvijen sa ciljem predviđanja kolebanja razina vode u vodotoku ovisno o meteorološkim parametrima, a koji se može opisati kao „black box" model čije su glavna karakteristike sposobnost učenja, pamćenja i generalizacije podataka na osnovi ulaznih i izlaznih podataka.
UNM posjeduje svojstvo modeliranja dinamičkih nelinearnih funkcija između podataka bez zadiranja u opis procesa između ulaza i izlaza iz modela. Spomenuti model bazira se na strukturi višeslojnog perceptrona (MLP, Multy Layer Perceptron) umjetne neuronske mreže, a koji se sastoji od ulaznog sloja, skrivenih slojeva i izlaznog sloja. Unutar spomenute strukture je u svrhu učenja modela korišten Levenberg-Marquardt (LM) algoritam učenja koji je modifikacija klasičnog Gauss-Newton-ovog optimalizacijskog algoritma i metode konjugiranog gradijenta. Unutar algoritma, Hessian matrica zakrivljenosti površine prostora pogreške aproksimira se Jacobijan matricom vektora pogreške (Gavrilović, 1972). LM algoritam se može prikazati na način (1):

$$
x_{k+1}=x_{k}-\left[J^{T} J+\mu I\right]^{-1} J^{T} e
$$

gdje je x vrijednost neuronske mreže, J Jakobijan matrica sastavljena od prvih derivacija vektora pogreške e po podesivim parametrima mreže, μ skalarni parametar koji kontrolira proces učenja unutar mreže, I jedinična matrica te e vektor pogreške. Parametar μ kontrolira algoritam pri čemu, ukoliko teži minimumu, pretvara formulu (1) u Gauss-Newton-ov algoritam, dok u suprotnom postaje sve sličniji algoritmu konjugiranog gradijenta (Abrahart, 2004).
Za predmetno istražno područje izrađen je hidrološki model koji će služiti za predviđanja otjecanja sa sliva. Sastoji se od više pod modela, a jedan od njih je i predviđanje kolebanja podzemnih razina vode, te je u ovisnosti o vremenskom koraku predviđanja grafički prikazan (Slika 11.). UNM model s 10 skrivenih slojeva izrađen je pomoću programskog paketa Matlab tvrtke MathWorks unutar kojeg je formiran ulazni sloj meteoroloških i hidroloških podataka koji utječu na kolebanje podzemne razine vode za analizirano razdoblje prikupljenih podataka od rujna 2013. do svibnja 2014. godine. Količina oborine, intenzitet oborine, temperatura zraka, brzina vjetra, insolacija i razina podzemne vode ulazni su sloj podataka u model, a mjereni su u 10-minutnom vremenskom koraku. Izlazni sloj predstavljaju podaci predviđanja podzemne razine vode u vremenskim koracima od 6, 12, 24 i 48 sati. Kvaliteta predviđanja je ispitana s dva kriterija: korijenom srednje kvadratne pogreške ($R M S E$, Root Mean Squared Error) i koeficijentom određenosti (r^{2}, Coefficient of determination). Kvaliteta, odnosno točnost modela definirana je ovim dvjema parametrima, gdje vrijednosti $R M S E$ koji teže prema nuli, te r^{2} koji teže prema jedan predstavljaju dobre modele. Rezultati predviđanja za zadane vremenske korake prikazani su grafički (Slika 11.) i tablično s kriterijima (Tablica 2.).
Dobiveni rezultati pokazuju da je na području Slanog potoka moguće najtočnije predvidjeti razinu podzemnih voda za vremenski korak od 12 sati s obzirom na dostupne mjerene podatke. Vrijednost parametara točnosti ukazuje da je za sve slučajeve vrlo visok koeficijent određenosti, dok je korijen srednje kvadratne pogreške veći od željenog, a što je vidljivo i na slici 11.

Slika 11. Usporedni prikaz mjerenih podataka i izlaza iz modela
Tablica 2. Vrijednost parametara kvalitete modela prema vremenu predviđanja

Korak vremena $[\mathbf{h}]$	RMSE $[-]$	$r^{2}[-]$
$\mathbf{6}$	6,338	0,9925
$\mathbf{1 2}$	10,306	0,98422
$\mathbf{2 4}$	15,833	0,97068
$\mathbf{4 8}$	23,575	0,94584

Sveobuhvatnim pristupom trenutnom stanju sliva Slanog potoka, te općenito slivu rijeke Dubračine, te kontinuiranim mjerenjem meteoroloških i hidroloških parametara omogućen je detaljan uvid u hidrogeološke procese, koji postaju značajan čimbenik u definiranju ponašanja malih slivova, te predviđanju hazardnih događaja kroz daljnji razvoj hidrološkog modela.

3.5. Istraživanja na slivu Dubračine

Istražno područje sliva rijeke Dubračine u okviru Međunarodnog hrvatsko-japanskog projekta, veličine $43 \mathrm{~km}^{2}$, smješteno je u Vinodolskoj dolini u Primorsko-goranskoj županiji. Uz glavnu rijeku Dubračinu, ovo slivno područje ima i veći broj manjih pritoka, sve bujičnog karaktera. Kao glavni faktori utjecaja pojave nestabilnosti tla tog područja mogu se izdvojiti topografija terena - strme padine, zatim visoka srednja godišnja oborina, te geološka raznolikost područja. Samo područje karakteriziraju vodopropusni karbonatski stijenski kompleks u njegovom gornjem dijelu, te vodonepropusni flišni stijenski kompleks u nižem dijelu sliva (Dragičević i drugi 2014). Prostorni plan područja posebnih obilježja Vinodolske Doline (Prostorni Plan područja posebnih obilježja Vinodolske Doline, 2004) predviđa razvoj više gospodarskih grana. Istraživanja znanstvenika diljem svijeta ukazuju da sve spomenute djelatnosti negativno utječu na procese erozije, te djeluju ka povećanju njena intenziteta.
Cilj istraživanja je analiza produkcije erozijskog nanosa na slivu Dubračine u Vinodolskoj dolini. Lokalni uvjeti na istražnom području, kao i dostupne podloge (od kojih posebno treba istaknuti LIDAR snimke financirane projektom Identifikacija rizika i planiranje korištenja zemljišta za ublažavanje nepogoda kod odrona zemlje i poplava u Hrvatskoj) uvelike ograničavaju izbor metode za procjenu produkcije erozijskog nanosa. Detaljnom analizom postojećih znanstvenih metoda, kao i relevantnih podloga
odabrana je Gavrilovićeva metoda, odnosno metoda potencijala erozije. Spomenuta metoda namijenjena je kvantifikaciji erozijskih procesa procjenom intenziteta erozije, produkcije nanosa i transporta nanosa riječnom mrežom (Gavrilović 1972; Gavrilović, 2001). Cilj je i unaprijediti metodu razradom evaluacije koeficijenta zaštite tla uvođenjem detaljnije gradacije, te koeficijenta erodibilnosti tla prema lokalnim prilikama područja. Provesti će se analiza vremenski varijabilnih parametara temperature zraka i oborina s obzirom na promjenu u vremenu. Analizirati će se i osjetljivost metode s obzirom na parametar namjene zemljišta (eng. land use) ili pokrova tla (eng. land cover) s obzirom na promjenu u vremenu. Do danas provedena je i objavljena analiza osjetljivosti metode na promjenu izvora podataka namjene zemljišta/pokrova tla, za sadašnjost (Tablica 3., Slika 12.) (Dragičević i drugi, 2014). Na slici 12. može se uočiti da primjena CORINE pokrova tla procjenjuje vrijednost ukupne godišnje produkcije erozijskog nanosa i do tri puta manje ($250 \mathrm{~m}^{3} / \mathrm{km}^{2} /$ godišnje), nego primjenom Landsat satelitskih snimki ($682 \mathrm{~m}^{3 /}$ $\mathrm{km}^{2} /$ godišnje), te oko pola vrijednosti dobivenih primjenom podloga namjene zemljišta iz Prostornog plana ($426 \mathrm{~m}^{3} / \mathrm{km}^{2} /$ godišnje) (Dragičević i drugi, 2014). Ovo istraživanje ukazalo je na osjetljivost Gavrilovićeve metode na parametar namjene zemljišta, odnosno pokrova tla.

Tablica 3. Namjena zemljišta/pokrov tla po kategorijama izraženi u \% prema različitim izvorima (CORINE, Prostorni plan i Landsat satelitske snimke) za sliv Dubračine

Kategorija namjene zemljišta /pokrova tla	CORINE	Prostorni plan	Landsat 8
Vodene površine	1	1	1
Poljoprivredna tla		29	
Gola stijena	5		20
Golo tlo do rijetka vegetacija	6		27
Rijetka do srednje gusta vegetacija	24	8	31
Gusta vegetaciǰa (šuma)	52	54	13
Urbana područja	12	7	8
Eksploatacija mineralnih sirovina		1	
Ukupno	100	100	100

Slika 12. Ukupna produkcija erozijskog nanosa na slivu Dubračine s obzirom na promjenu parametra „Koeficijent zaštićenosti tla vegetacijskim pokrovom / Koeficijent načina korištenja zemljišta" prema različitim izvorima informacija za isto vremensko razdoblje

Sljedeći korak istraživanja bio je osmisliti i organizirati mjerenja erozijskog nanosa u samom slivu. Razvijeno je mnogo metoda za potrebe verifikacije modela za procjenu produkcije erozijskog nanosa. Verifikacija dobivenih rezultata provodi se metodom terestičke fotogrametrije (Daba i drugi, 2003; Ypsilantis i drugi, 2011) upotrebom opreme: fotografskog aparata CANON EOS Kiss X4 te računalnog softvera KURAVES koje je osigurao međunarodni hrvatsko-japanski projekt. Verifikacija se provodi na dvije lokacije. Prva lokacija smještena je na samoj erozijskoj bazi gdje se mjeri ukupna produkcija erozijskog nanosa. Druga lokacija smještena je na vodotoku Malenica, neposredno prije utoka vodotoka Mala Dubračina. Vremenski inkrement između mjerenja iznosi 1 mjesec. Prvi rezultati mjerenja i njihova usporedba s izlaznim rezultatima modela očekuju se otprilike godinu dana nakon početka mjerenja, koje je službeno započeto u lipnju 2014 godine.

ZAKLJUČAK

Zahvaljujući prijavama i sudjelovanju na međunarodnim znanstvenim i europskim projektima, moguće je dobiti znanstveno-istraživačku opremu koja je temelj za provođenje istraživanja, za razvoj suradnje sa znanstvenicima u zemlji i inozemstvu i dobivanju rezultata korisnih za razvoj gospodarstva. Bilateralni hrvatsko - japanski projekt „Identifikacija rizika i planiranje korištenja zemljišta za ublažavanje nepogoda kod odrona zemlje i poplava u Hrvatskoj" omogućio je da se napravi analiza geohazarda i pripreme smjernice za primjenu rezultata Projekta u sustavu prostornog uređenja.
Korištenjesofisticirane znanstveno-istraživačkeopremenabavljene preko projekta,„Razvoj istraživačke infrastrukture za laboratorije na Kampusu Sveučilišta u Rijeci" osigurat će implementaciju novih metodologija i tehnologija u inter i multidisciplinarnim područjima znanosti i istraživanja s ciljem povećanja istraživačkih kapaciteta Sveučilišta. Navedene aktivnosti omogućit će postizanje izvrsnosti u razvoju, inovacijama i istraživanju u Republici Hrvatskoj, te smanjiti regionalne nejednakosti u razini znanstvene, istraživačke i obrazovne infrastrukture. Oprema će omogućiti povećanje broja znanstvenih projekata temeljenih na znanju i implementaciju rezultata na tržištu u suradnji s malim i srednjim poduzećima.

LITERATURA

[1] Abrahart, R.J., Kneale, P.E., See, L.M.: Neural networks for hydrological modelling, Taylor \&Francis Group plc, London, U.K., 2004.
[2] Benac Č.; Jurak, V.; Oštrić, M., (2006.): Qualitative assessment of geohazard in the Rječina Valley, Croatia. Proceedings of the 10th IAEG International Congress: IAEG Engineering geology for tomorrow's cities, The Geological Society of London, 658, pp. 1-7.
[3] Benac, Č., Jurak, V., Oštrić, M., Holjević, D. \& Petrović, G.: Pojava prekomjerne erozije u području Slanog potoka (Vinodolska dolina), Knjiga sažetaka 3. Hrvatskog geološkog kongresa, Opatija, pp. 173-174., September 2005. Croatian Geological Institute, Zagreb, 2005.
[4] Benac, Č.; Arbanas, Ž.; Jurak, V.; Oštrić, M.; Ožanić, N., (2005.): Complex landslide in the Rječina valley (Croatia): origin and sliding mechanism. Bulletin of

Engineering Geology and the Environment, 64, 4, pp. 361-371.
[5] Benac, Č.; Dugonjić, S.; Oštrić, M.; Arbanas, Ž.; Đomlija P., (2010.): Complex landslide in the Rječina River valley: monitoring results. In: Horvat, M. (ed.). Proceedings of the 4th Croatian geological congress, Šibenik, 14-15 October, Zagreb, Croatian Geological Survey, pp. 157-158.
[6] Carter, R.W.G., Orford, J.D. (1993.): The morphodynamics of coarse clastic beaches and barriers: a short term and long term perspective. Journal of Coastal Research, 15: 158-179.
[7] Daba, S.; Rieger, W.; Strauss, P.: Assessment of gully erosion in eastern Ethiopia using photogrammetric techniques, Catena 50, 2003, pp. 273-291;
[8] DGU (2015.): Cropos Dostupno na: (http://www.cropos.hr/index.php?option=com_ contentiview=articleiid=13:vppsicatid=6:vppsiItemid=3). (10.1.2015).
[9] Dragičević, N., et.al: Erosion Model Sensitivity to Land Cover Inputs: case Study of the Dubračina Catchment, Croatia, GISRUK, 2014.
[10] Fofonoff N.P., Millard Jr. R. C.: Algorithms for Computation of Fundamental Properties of Seawater. UNESCO Technical Papers in Marine Science, Paris, 1983.
[11] Gavrilović, S.: Inženjering o bujičnim tokovima i eroziji, časopis „Izgradnja" specijalno izdanje, ur. Marković, A., Jarić, M., PPT, Beograd, 1972
[12] Gavrilović, Z., Stefanović, M.; Brajković, M.; Isaković, D.: Identifikacija erozionih područja, Upravljanje vodnim resursima Srbije 01, 2001., pp. 191-208.
[13] Grimani, I., Šušnjar, M., Bukovac, J., Milan, A., Nikler, J., Crnolatac, J., Šikić, I., Blašković, I., Osnovna geološka karta SFRJ 1:100000-list Crikvenica, Institut za geološka istraživanja, Zagreb, Savezni geološki zavod, Beograd, 1973.
[14] Hansen, D.V., Rattray, M.: New dimensions in estuary classification. Limnology and Oceanography, 3, pp. 319-3261, 1966.
[15] Ibanez, C., Pont, D., Prat, N.: Characterization of the Ebre and Rhone estuaries: A basis for defining and classifying salt-wedge estuaries, Limnology and Oceanography, 1, pp. 89-101, 1997.
[16] James, M. R., Robson, S. (2012.): Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research, 117: F03017.
[17] James, M.R., Ilić, S., Ružić, I. (2013.): Measuring 3D coastal change with a digital camera. Coastal Dynamics 2013. 7th International Conference on Coastal Dynamics, Arcachon, 893-904.
[18] Krvavica N., Mofardin B., Ružić I., Ožanić N.: Measurement and Analysis of Salinization at the Rječina Estuary. Građevinar. 64(11), pp. 923-933, 2012.
[19] Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math., Vol. 11, str 431-441, 1963.
[20] Pedrozo-Acuña, A., Simmonds, D., Otta, A.K., Chadwick, A.J. (2006.): On the cross-shore profile change of gravel beaches. Coastal Engeenering, 53: 335-347.
[21] Perić, M. (2007.): Englesko hrvatski enciklopedijski rječnik istraživanja i proiz-
vodnje nafte i plina. Sveučilišni priručnik Rudarsko-geološko-naftnog fakulteta u Zagrebu, Izdavač: INA Industrija nafte d.d. - Sektor korporativnih komunikacija, Grafocolor d.o.o. Zagreb, Zagreb, 1038. str.
[22] Prostorni Plan područja posebnih obilježja Vinodolske Doline, Primorsko-Goranska županija, Županijski zavod za odrđivi razvoj i prostorno planiranje, Rijeka, 2004.
[23] Ružić I., Sušanj I., Ožanić N. (2010.): Analyses of event runoff coefficients: Slani potok and Dubračina river, Croatia-Japan Project on Risk Identification And LandUse Planning for Disaster Mitigation of Landslides and Floods in Croatia: 1st project workshop: „INTERNATIONAL EXPIRIENCE", Dubrovnik (Croatia).
[24] Ružić, I. (2014.): Dinamika žala u području Kvarnera, Građevinski fakultet Rijeka, Doktorski rad.
[25] Ružić, I., Benac, Č., Marović, I., Ilić, S. (2015.): Stability assessment of coastal cliffs using digital imagery. Acta Geotechnica Slovenica. (prihvaćen za objavljivanje).
[26] Ružić, I., Marović, I., Vivoda, M., Dugonjić Jonjčević, S., Kalajžić, D., Benac, Č., Ožanić, N. (2013.): Application of Structure-from-Motion photogrammetry for erosion processes monitoring, Moscenicka Draga example. The 4th Workshop of the Japanese-Croatian Project on "Risk Identification and Land-Use Planning for Disaster Mitigation of Landslides and Floods in Croatia", University of Split, Split, 49-50.
[27] Ružić. I., Marović, I., Benac, Č., Ilić, S. (2014.): Coastal cliff geometry derived from Structure-from-Motion photogrammetry at Stara Baška, Krk Island, Croatia. Geo-Marine Letters, 34: 555-565.
[28] Sušanj, I., Dragičević, N., Karleuša, B., Ožanić, N.: GIS based monitoring database for Dubračina river catchment area as a tool for mitigation and prevention of flash flood and erosion, Thirteenth International Symposium on WATER MANAGEMENT AND HYDRAULIC ENGINEERING (Proceedings) / Šoltész, Andrej ; Baraková, Dana ; Orfánus, Martin ; Holubec, Michal (ur.), Bratislava (Slovakia), str 637-652, 2013.
[29] Sušanj, I., Ožanić, N., Yamashiki, Y.: Analysis of flash flood occurred at Slani potok, Croatia-Japan Project on Risk Identification And Land-Use Planning for Disaster Mitigation of Landslides and Floods in Croatia: 3rd Project Workshop, Zagreb (Croatia), 2012.
[30] Takahashi, T. (2007.): Debris flow: Mechanics, Prediction and Counter Measures. Taylor and Francis, 448 pages.
[31] Vivoda, M.; Benac, Č.; Žic, E.; Đomlija, P.; Dugonjić Jovančević, S. (2012.): Geohazard u dolini Rječine u prošlosti i sadašnjosti. Hrvatske vode. 20, 81, str. 105116.
[32] Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., Reynolds, J. M. (2012.): "Structure-from-Motion" photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179: 300-314.
[33] Ypsilantis, W. G.: Upland soil erosion monitoring and assessment: An overview. Tech Note 438. Bureau of Land Management, National Operations Center, Denver, USA, 2011.
[34] Žic, E. (2015.): Prilog modeliranju potencijalnih poplavnih tokova i tokova krupnozrnatog materijala u slivu Rječine, Doktorski rad, Građevinski fakultet Sveučilišta u Rijeci, Mentor: Ožanić, Nevenka; komentor: Bićanić, Nenad, 281 str.
[35] Žic, E.; Bićanić, N.; Koziara, T.; Ožanić, N. (2014.): The numerical modelling of suspended sediment propagation in small torrents with the application of the Contact Dynamics Method. Tehnical Gazette, 21(5), pp. 939-952.
[36] Žic, E., Yamashiki, Y., Kurokawa, S., Fujiki, S., Ožanić, N. (2013.): Physical modelling of debris flow movement - laboratory research. 4th Workshop of the Japa-nese-Croatian Project on "Risk Identification and Land-Use Planning for Disaster Mitigation of Landslides and Floods in Croatia", Book of abstracts. Vlastelica, G.; Andrić, I.; Salvezani, D. (eds.), Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Split, pp. 53-54.
[37] Žic, E.; Arbanas, Ž.; Bićanić, N.; Ožanić, N. (2015.): A model of Mudflow propagation downstream from the Grohovo Landslide near the City of Rijeka (Croatia), Natural Hazards and Earth System Sciences (NHESS), 1, pp. 293.-313.
[38] Županijski zavod za razvoj, prostorno uređenje i zaštitu okoliša: Prostorni plan područja posebnih obilježja Vinodoloske doline, Stručna dokumentacija, Rijeka, 2004, nepublicirano

Ovaj je članak nastao kao rezultat rada na Međunarodnom hrvatsko-japanskom znanstvenom projektu Identifikacija rizika i planiranja korištenja zemljišta za ublažavanje nepogoda kod odrona zemlje i poplava u Hrvatskoj (Risk Identification and Land-Use Planning for Disaster Mitigation of Landslides and Floods in Croatia), te znanstvenog projekta - sveučilišne potpore - Hidrologija vodnih resursa i identifikacija rizika od poplava i blatnih tokova na krškom području (13.05.1.1.03), Sveučilišta u Rijeci kojih je voditelj prof.dr.sc. Nevenka Ožanić sa Građevinskog fakulteta Sveučilišta u Rijeci.

AUTORI

prof.dr.sc. Nevenka Ožanić, dipl.ing.građ. ${ }^{\text {a }}$
dr.sc. Elvis Žic, dipl.ing.građ. ${ }^{\text {a }}$
Ivana Sušanj, dipl.ing.građ. ${ }^{\text {a }}$
doc.dr.sc. Vanja Travaš ${ }^{\text {a }}$
dr.sc. Igor Ružić ${ }^{\text {a }}$
Nevena Dragičević dipl.ing.građ. ${ }^{\text {a }}$
Nino Krvavica, dipl.inž.građ. ${ }^{\text {a }}$
a Građevinski fakultet Sveučilišta u Rijeci; Radmile Matejčić 3; Rijeka; Hrvatska, nozanic@gradri.uniri.hr; elvis.zic@gradri.uniri.hr; ivana.susanj@gradri.uniri.hr; vanja. travas@gradri.uniri.hr; igor.ruzic@gradri.uniri.hr; nevena.dragicevic@gradri.uniri.hr; nino.krvavica@gradri.uniri.hr

