Pregled bibliografske jedinice broj: 760375
Adaptable urban water demand prediction system
Adaptable urban water demand prediction system // IWA World Water Congress & Exhibition 2014
Lisabon, Portugal, 2014. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
CROSBI ID: 760375 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Adaptable urban water demand prediction system
Autori
Banjac, Goran ; Vašak, Mario ; Baotić, Mato
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo
Skup
IWA World Water Congress & Exhibition 2014
Mjesto i datum
Lisabon, Portugal, 21.09.2014. - 26.09.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
artificial neural networks; online parameters tuning; partial mutual information; water demand prediction
Sažetak
In this work identification of 24-hours-ahead water demand prediction model based on historical water demand data is considered. As part of the identification procedure, the input variable selection algorithm based on partial mutual information is implemented. It is shown that meteorological data on a daily basis are not relevant for the water demand prediction in the sense of partial mutual information for the analysed water distribution system of the city of Tavira, Algarve, Portugal. Water demand prediction system is modelled using artificial neural networks which offer a great potential for the identification of complex dynamic systems. The adaptive tuning procedure of model parameters is also developed in order to enable the model to adapt to changes in the system. A significant improvement of the prediction ability of such model in relation to the model with fixed parameters is shown when a certain trend is present in the water demand profile.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb