Time and graphical properties of processes indexed by time-like graphs - Tvrtko Tadić, UW, Seattle

Introduction

stochastic process $(X(t): t \in T) - a$ collection of random variables indexed by set T

What are we talking about?

stochastic processes indexed by a specific graph with a time structure

processes on a representation of a graph (the process defined in each point of the representation)

 $\begin{array}{ccccccc} 0 & 1/3 & 2/3 \\ \vdots & \vdots & \vdots \end{array}$

Graphical models

• graphical model $(X_v:v\in V)$

 ${\scriptstyle lacksymbol{\square}} G = (V,E)$ a (un)directed graph

 \blacksquare conditional independencies encoded in the structure of the graph G

 $X_A \perp X_C | X_B$

Time-like graphs (TLG's)

each vertex k has an attribute – time t_k ;

E_{jk} is an edge between t_j and t_k where $t_j < t_k$;

two processes are together at 0, 1 and in the time interval [1/3, 2/3]

Original model

Time-like graphs and processes on them introduced in

[1] Burdzy, K., Pal S., *Markov processes on time-like graphs*, Ann. Probab. **39** (2011)

time \rightarrow

Key graph features:
beginning and end of degree 1

(•)

other vertices of degree 3 (•)
defined time-like graphs with infinite number of vertices

Features of processes:

- defined on a NCC subfamily
- distributions of processes along different time-paths the same
- (some) time and graph induced properties

TLG's are represented in \mathbb{R}^3 where one dimension is time (t).

Construction of the process (T' 12)

To construct a process X on $\mathcal G$ we need:

 $\blacksquare \mathcal{G}$ to have a special structure

■ a family of consistent (Markov) distributions along the time-paths;

If these conditions hold ...

processes behave as expected;

2 there are some Markov-type properties induced by the structure of ${\cal G}$

Theorem (T '12)

These two properties guarantee that the distribution of $(X(t) : t \in \mathcal{G})$ is independent of the construction.

Time-Markovian property (Burdzy-Pal '11, T' 12)

If distributions along time-paths are Markov, then:

 $(X(s): s \preceq t) \perp (X(h): h \succeq t) \mid X(t)$

Martingales

For $s \preceq t$

Theorem (T' 13)

Let \mathcal{G} be a TLG^{*}. Let X(t) be a RCLL martingale with respect to the right continuous filtration $(\mathcal{F}_t)_{t\in\mathcal{G}}$. For stopping times $T_1 \preceq T_2$, if $\mathbb{E}(|X(T_2)|) < \infty$ then $\mathbb{E}(X(T_2)|\mathcal{F}_{T_1}) = X(T_1).$

Spine-Markovian property (T' 12)

- path *σ* from beginning to end *G* after removing *σ* decomposes into several components *G* component connected to *σ* through roots *W* (•)

Moralized graph-Markovian property (T '14)

Adding new edges to the graph we can read the conditional independencies:

 $(X(t):t\in\mathcal{E}_1)\perp(X(t):t\in\mathcal{E}_2)\,|\,X_W$

projection to undirected graphical models

▲口▶ ▲御▶ ▲理▶ ▲理▶ 三里 →のA

UW, Seattle

