Time and graphical properties of processes indexed by time-like graphs - Tvrtko Tadić, UW, Seattle

Introduction

$■$ stochastic process $(\boldsymbol{X}(t): t \in T)$ - a collection of random variables indexed by set T

What can T be?

- discrete or continuous time ($\boldsymbol{T} \subset \mathbb{R}$)
- vertices of a graph (graphical models)

■ continuous graph-type structure?

What are we talking about?

■stochastic processes indexed by a specific graph with a time structure

- processes on a representation of a graph (the process defined in each point of the representation)

\square two processes are together at $\mathbf{0}, \mathbf{1}$ and in the time interval $[1 / 3,2 / 3]$

Original model

Time-like graphs and processes on them introduced in
[1] Burdzy, K., Pal S., Markov processes on time-like graphs, Ann. Probab. 39 (2011)

Graphical models

- graphical model ($\left.\boldsymbol{X}_{\boldsymbol{v}}: \boldsymbol{v} \in \boldsymbol{V}\right)$
$\boxed{\boldsymbol{G}}=(\boldsymbol{V}, \boldsymbol{E})$ a (un)directed graph
■ conditional independencies encoded in the structure of the graph G

$\boldsymbol{X}_{A} \perp X_{C} \mid X_{B}$

Time-like graphs (TLG's)

■ each vertex k has an attribute time $\boldsymbol{t}_{\boldsymbol{k}}$;
$\square \boldsymbol{E}_{\boldsymbol{j} \boldsymbol{k}}$ is an edge between $\boldsymbol{t}_{\boldsymbol{j}}$ and $\boldsymbol{t}_{\boldsymbol{k}}$ where $\boldsymbol{t}_{\boldsymbol{j}}<\boldsymbol{t}_{\boldsymbol{k}}$;

TLG's are represented in \mathbb{R}^{3} where one dimension is time (t).

Construction of the process ($\mathrm{T}^{\prime} 12$)

To construct a process \boldsymbol{X} on \mathcal{G} we need:
$■ \mathcal{G}$ to have a special structure
■ a family of consistent (Markov) distributions along the time-paths;

If these conditions hold.
I processes behave as expected;
■ there are some Markov-type properties induced by the structure of \mathcal{G}

Theorem (T'12)

These two properties guarantee that the distribution of $(\boldsymbol{X}(\boldsymbol{t}): \boldsymbol{t} \in \mathcal{G})$
is independent of the construction.

Martingales

For $s \preceq t$

Theorem (T^{\prime} 13)
Let \mathcal{G} be a TLG^{*}. Let $\boldsymbol{X}(\boldsymbol{t})$ be a RCLL martingale with respect to the right continuous filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathcal{G}}$. For stopping times $\boldsymbol{T}_{1} \preceq \boldsymbol{T}_{2}$, if $\mathbb{E}\left(\left|\boldsymbol{X}\left(\boldsymbol{T}_{2}\right)\right|\right)<\infty$ then

$$
\mathbb{E}\left(X\left(T_{2}\right) \mid \mathcal{F}_{T_{1}}\right)=X\left(T_{1}\right)
$$

Moralized graph-Markovian property (T '14)

Adding new edges to the graph we can read the conditional independencies:

$$
\left(X(t): t \in \mathcal{E}_{1}\right) \perp\left(X(t): t \in \mathcal{E}_{2}\right) \mid X_{W}
$$

- version of the global Markov property

■ projection to undirected graphical models

