Pregled bibliografske jedinice broj: 755249
Root separation for integer polynomials
Root separation for integer polynomials // Workshop on Diophantine problems
Graz, Austrija, 2014. (pozvano predavanje, nije recenziran, neobjavljeni rad, znanstveni)
CROSBI ID: 755249 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Root separation for integer polynomials
Autori
Dujella, Andrej
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
Workshop on Diophantine problems
Mjesto i datum
Graz, Austrija, 19.05.2014. - 20.05.2014
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
polynomials; root separation
Sažetak
We consider the question how close to each other can be two distinct roots of an integer polynomial P(X) of degree d. We compare the distance between two distinct roots of P(X) with its height H(P), defined as the maximal of the absolute values of its coefficients. The first result in this direction in due to Mahler, who proved that the distance is > c(d)*H(P)^(-d+1), for an explicit constant c(d), depending only on d. We will present some recent results in opposite direction, obtained by constructing explicit families of irreducible and reducible polynomials of degree d whose roots are very close. This is joint work with Yann Bugeaud.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372781-2821 - Diofantske jednadžbe i eliptičke krivulje (Dujella, Andrej, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Andrej Dujella
(autor)