Pregled bibliografske jedinice broj: 755248
Root separation for integer polynomials
Root separation for integer polynomials // Unlikely Intersections
Marseille, Francuska, 2014. str. 5-5 (pozvano predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 755248 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Root separation for integer polynomials
Autori
Dujella, Andrej
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Unlikely Intersections
/ - , 2014, 5-5
Skup
Unlikely intersections
Mjesto i datum
Marseille, Francuska, 03.02.2014. - 07.02.2014
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
polynomials ; root separation
Sažetak
We consider the question how close to each other can be two distinct roots of an integer polynomial P(X) of degree d. We compare the distance between two distinct roots of P(X) with its height H(P), defined as the maximal of the absolute values of its coefficients. The first result in this direction in due to Mahler, who proved that the distance is > c(d)*H(P)^(-d+1), for an explicit constant c(d), depending only on d. We will present some recent results in opposite direction, obtained by constructing explicit families of irreducible and reducible polynomials of degree d whose roots are very close. This is joint work with Yann Bugeaud.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZOS-037-0372781-2821 - Diofantske jednadžbe i eliptičke krivulje (Dujella, Andrej, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Andrej Dujella
(autor)