Pregled bibliografske jedinice broj: 755223
K-invariants in the algebra $U(g) \otimes C(p)$ for the group SU(2, 1)
K-invariants in the algebra $U(g) \otimes C(p)$ for the group SU(2, 1) // Glasnik matematički, 50 (2015), 2; 397-414 doi:10.3336/gm.50.2.09 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 755223 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
K-invariants in the algebra $U(g) \otimes C(p)$ for the group SU(2, 1)
Autori
Prlić, Ana
Izvornik
Glasnik matematički (0017-095X) 50
(2015), 2;
397-414
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Lie group ; Lie algebra ; representation ; special unipotent rep- resentation ; Dirac operator ; Dirac cohomology
Sažetak
Let $g = k \oplus p$ be the Cartan decomposition of the complexified Lie algebra g = sl(3, C) of the group G = SU(2, 1). Let K = S(U (2) × U (1)) ; so K is a maximal compact subgroup of G. Let U(g) be the universal enveloping algebra of g, and let C(p) be the Clifford algebra with respect to the trace form B(X, Y ) = tr(XY ) on p. We are going to prove that the algebra of K–invariants in U (g) \otimes C(p) is generated by five explicitly given elements. This is useful for studying algebraic Dirac induction for (g, K)-modules. Along the way we will also recover the (well known) structure of the algebra U (g)^K.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus