Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 754817

Color Dog: Guiding the Global Illumination Estimation to Better Accuracy


Banić, Nikola; Lončarić, Sven
Color Dog: Guiding the Global Illumination Estimation to Better Accuracy // VISAPP 2015: Proceedings of the 10th International Conference on Computer Vision Theory and Applications - (Volume 1) / Braz, José ; Battiato, Sebastiano ; Imai, Francisco (ur.).
Berlin, Njemačka: Scitepress, 2015. str. 129-135 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 754817 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Color Dog: Guiding the Global Illumination Estimation to Better Accuracy

Autori
Banić, Nikola ; Lončarić, Sven

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
VISAPP 2015: Proceedings of the 10th International Conference on Computer Vision Theory and Applications - (Volume 1) / Braz, José ; Battiato, Sebastiano ; Imai, Francisco - : Scitepress, 2015, 129-135

ISBN
978-989-758-089-5

Skup
10th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications

Mjesto i datum
Berlin, Njemačka, 11.03.2015. - 14.03.2015

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
clustering ; color constancy ; illumination estimation ; image enhancement ; white balancing

Sažetak
An important part of image enhancement is color constancy, which aims to make image colors invariant to illumination. In this paper the Color Dog (CD), a new learning-based global color constancy method is proposed. Instead of providing one, it corrects the other methods' illumination estimations by reducing their scattering in the chromaticity space by using a its previously learning partition. The proposed method outperforms all other methods on most high-quality benchmark datasets. The results are presented and discussed.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
036-0362214-1989 - Inteligentne metode obrade i analize slika (Lončarić, Sven, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Sven Lončarić (autor)

Avatar Url Nikola Banić (autor)

Citiraj ovu publikaciju:

Banić, Nikola; Lončarić, Sven
Color Dog: Guiding the Global Illumination Estimation to Better Accuracy // VISAPP 2015: Proceedings of the 10th International Conference on Computer Vision Theory and Applications - (Volume 1) / Braz, José ; Battiato, Sebastiano ; Imai, Francisco (ur.).
Berlin, Njemačka: Scitepress, 2015. str. 129-135 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Banić, N. & Lončarić, S. (2015) Color Dog: Guiding the Global Illumination Estimation to Better Accuracy. U: Braz, J., Battiato, S. & Imai, F. (ur.)VISAPP 2015: Proceedings of the 10th International Conference on Computer Vision Theory and Applications - (Volume 1).
@article{article, author = {Bani\'{c}, Nikola and Lon\v{c}ari\'{c}, Sven}, year = {2015}, pages = {129-135}, keywords = {clustering, color constancy, illumination estimation, image enhancement, white balancing}, isbn = {978-989-758-089-5}, title = {Color Dog: Guiding the Global Illumination Estimation to Better Accuracy}, keyword = {clustering, color constancy, illumination estimation, image enhancement, white balancing}, publisher = {Scitepress}, publisherplace = {Berlin, Njema\v{c}ka} }
@article{article, author = {Bani\'{c}, Nikola and Lon\v{c}ari\'{c}, Sven}, year = {2015}, pages = {129-135}, keywords = {clustering, color constancy, illumination estimation, image enhancement, white balancing}, isbn = {978-989-758-089-5}, title = {Color Dog: Guiding the Global Illumination Estimation to Better Accuracy}, keyword = {clustering, color constancy, illumination estimation, image enhancement, white balancing}, publisher = {Scitepress}, publisherplace = {Berlin, Njema\v{c}ka} }




Contrast
Increase Font
Decrease Font
Dyslexic Font