Pregled bibliografske jedinice broj: 751285
A novel feature selection techniques based on contrast set mining
A novel feature selection techniques based on contrast set mining // Advances in Electrical and Computer Engineering / Nikoes E.Mastorakis, Imre J. Rudes (ur.).
Tenerife, Španjolska, 2015. str. 183-194 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 751285 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A novel feature selection techniques based on contrast set mining
Autori
Oreski, Dijana ; Klicek, Bozidar
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Advances in Electrical and Computer Engineering
/ Nikoes E.Mastorakis, Imre J. Rudes - , 2015, 183-194
Skup
14th International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases (AIKED '15)
Mjesto i datum
Tenerife, Španjolska, 10.01.2015. - 12.01.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Contrast set mining ; Feature selection ; STUCCO ; Magnum Opus ; Data mining comparative analysis ; neural networks ; classification
Sažetak
Data classification is a challenging task in era of big data due to high number of features. Feature selection is a step in process of knowledge discovery in data that aims to reduce dimensionality and improve the classification performance. The purpose of this research is to define new techniques for feature selection in order to improve classification accuracy and reduce the time required for feature selection. The subject of the research is an application and evaluation of contrast set mining techniques as techniques for feature selection. The extensive comparison with benchmarking feature selection techniques is conducted on 128 data sets with the aim to determine can we use contrast set mining techniques as a superior feature selection techniques and whether they can eliminate the bottleneck of the entire process of knowledge discovery in data. Results of the 1792 analysis showed that in the more than 80% of the 128 analyzed data sets contrast set mining techniques resulted with more accurate classification and quickly performed feature selection than benchmarking feature selection techniques.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin