Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 751285

A novel feature selection techniques based on contrast set mining


Oreski, Dijana; Klicek, Bozidar
A novel feature selection techniques based on contrast set mining // Advances in Electrical and Computer Engineering / Nikoes E.Mastorakis, Imre J. Rudes (ur.).
Tenerife, Španjolska, 2015. str. 183-194 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 751285 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A novel feature selection techniques based on contrast set mining

Autori
Oreski, Dijana ; Klicek, Bozidar

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Advances in Electrical and Computer Engineering / Nikoes E.Mastorakis, Imre J. Rudes - , 2015, 183-194

Skup
14th International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases (AIKED '15)

Mjesto i datum
Tenerife, Španjolska, 10.01.2015. - 12.01.2015

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Contrast set mining ; Feature selection ; STUCCO ; Magnum Opus ; Data mining comparative analysis ; neural networks ; classification

Sažetak
Data classification is a challenging task in era of big data due to high number of features. Feature selection is a step in process of knowledge discovery in data that aims to reduce dimensionality and improve the classification performance. The purpose of this research is to define new techniques for feature selection in order to improve classification accuracy and reduce the time required for feature selection. The subject of the research is an application and evaluation of contrast set mining techniques as techniques for feature selection. The extensive comparison with benchmarking feature selection techniques is conducted on 128 data sets with the aim to determine can we use contrast set mining techniques as a superior feature selection techniques and whether they can eliminate the bottleneck of the entire process of knowledge discovery in data. Results of the 1792 analysis showed that in the more than 80% of the 128 analyzed data sets contrast set mining techniques resulted with more accurate classification and quickly performed feature selection than benchmarking feature selection techniques.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet organizacije i informatike, Varaždin

Profili:

Avatar Url Dijana Oreški (autor)

Avatar Url Božidar Kliček (autor)


Citiraj ovu publikaciju:

Oreski, Dijana; Klicek, Bozidar
A novel feature selection techniques based on contrast set mining // Advances in Electrical and Computer Engineering / Nikoes E.Mastorakis, Imre J. Rudes (ur.).
Tenerife, Španjolska, 2015. str. 183-194 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Oreski, D. & Klicek, B. (2015) A novel feature selection techniques based on contrast set mining. U: Nikoes E.Mastorakis, I. (ur.)Advances in Electrical and Computer Engineering.
@article{article, author = {Oreski, Dijana and Klicek, Bozidar}, editor = {Nikoes E.Mastorakis, I.}, year = {2015}, pages = {183-194}, keywords = {Contrast set mining, Feature selection, STUCCO, Magnum Opus, Data mining comparative analysis, neural networks, classification}, title = {A novel feature selection techniques based on contrast set mining}, keyword = {Contrast set mining, Feature selection, STUCCO, Magnum Opus, Data mining comparative analysis, neural networks, classification}, publisherplace = {Tenerife, \v{S}panjolska} }
@article{article, author = {Oreski, Dijana and Klicek, Bozidar}, editor = {Nikoes E.Mastorakis, I.}, year = {2015}, pages = {183-194}, keywords = {Contrast set mining, Feature selection, STUCCO, Magnum Opus, Data mining comparative analysis, neural networks, classification}, title = {A novel feature selection techniques based on contrast set mining}, keyword = {Contrast set mining, Feature selection, STUCCO, Magnum Opus, Data mining comparative analysis, neural networks, classification}, publisherplace = {Tenerife, \v{S}panjolska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font