Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 74615

Filtering noisy instances and outliers


Gamberger, Dragan; Lavrač, Nada
Filtering noisy instances and outliers // Instance Selection and Construction for Data Mining / Liu, Huan. ; Motoda, Hiroshi. (ur.).
Boston (MA): Kluwer Academic Publishers, 2001. str. 375-394


CROSBI ID: 74615 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Filtering noisy instances and outliers

Autori
Gamberger, Dragan ; Lavrač, Nada

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
Instance Selection and Construction for Data Mining

Urednik/ci
Liu, Huan. ; Motoda, Hiroshi.

Izdavač
Kluwer Academic Publishers

Grad
Boston (MA)

Godina
2001

Raspon stranica
375-394

ISBN
0-7923-7209-3

Ključne riječi
noise, outliers, saturation filter

Sažetak
Instance selection methods are aimed at finding a representative data subset that can replace the original dataset but still provide enough information to solve a given data mining task. If instance selection is done by sampling, the sample should preferably exclude noisy instances and outliers. This chapter presents methods for noise and outlier detection that can be incorporated into sampling as filters for data cleaning. The chapter presents the following filtering algorithms: a saturation filter, a classification filter, a combined classification-saturation filter, and a consensus saturation filter. The distinguishing feature of the novel consensus saturation filter is its high reliability which is due to the multiple detection of outliers and/or noisy instances. Medical evaluation in the problem of coronary artery disease diagnosis shows that the detected instances are indeed noisy or non-typical class representatives.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
00980501

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Dragan Gamberger (autor)


Citiraj ovu publikaciju:

Gamberger, Dragan; Lavrač, Nada
Filtering noisy instances and outliers // Instance Selection and Construction for Data Mining / Liu, Huan. ; Motoda, Hiroshi. (ur.).
Boston (MA): Kluwer Academic Publishers, 2001. str. 375-394
Gamberger, D. & Lavrač, N. (2001) Filtering noisy instances and outliers. U: Liu, H. & Motoda, H. (ur.) Instance Selection and Construction for Data Mining. Boston (MA), Kluwer Academic Publishers, str. 375-394.
@inbook{inbook, author = {Gamberger, Dragan and Lavra\v{c}, Nada}, year = {2001}, pages = {375-394}, keywords = {noise, outliers, saturation filter}, isbn = {0-7923-7209-3}, title = {Filtering noisy instances and outliers}, keyword = {noise, outliers, saturation filter}, publisher = {Kluwer Academic Publishers}, publisherplace = {Boston (MA)} }
@inbook{inbook, author = {Gamberger, Dragan and Lavra\v{c}, Nada}, year = {2001}, pages = {375-394}, keywords = {noise, outliers, saturation filter}, isbn = {0-7923-7209-3}, title = {Filtering noisy instances and outliers}, keyword = {noise, outliers, saturation filter}, publisher = {Kluwer Academic Publishers}, publisherplace = {Boston (MA)} }




Contrast
Increase Font
Decrease Font
Dyslexic Font