Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 744907

Using Self-Organizing Maps in creation of an ocean forecasting system


Vilibić, Ivica; Žagar, Nedjeljka; Cosoli, Simone; Dadić, Vlado; Ivanković, Damir; Jesenko, Blaž; Kalinić, Hrvoje; Mihanović, Hrvoje; Šepić, Jadranka; Tudor, Martina
Using Self-Organizing Maps in creation of an ocean forecasting system // AGU Fall Meeting
San Francisco (CA), Sjedinjene Američke Države, 2014. (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 744907 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Using Self-Organizing Maps in creation of an ocean forecasting system

Autori
Vilibić, Ivica ; Žagar, Nedjeljka ; Cosoli, Simone ; Dadić, Vlado ; Ivanković, Damir ; Jesenko, Blaž ; Kalinić, Hrvoje ; Mihanović, Hrvoje ; Šepić, Jadranka ; Tudor, Martina

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Skup
AGU Fall Meeting

Mjesto i datum
San Francisco (CA), Sjedinjene Američke Države, 15.12.2014. - 19.12.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
neural networks; ocean forecasting; Adriatic Sea

Sažetak
We present the first results of the NEURAL project (www.izor.hr/neural), which is dedicated to creation of an efficient and reliable ocean surface current forecasting system. This system is based on high-frequency (HF) radar measurements, numerical weather prediction (NWP) models and neural network algorithms (Self-Organizing Maps, SOM). Joint mapping of mesoscale ground winds and HF radars in a coastal area points to a high correlation between two sets, indicating that wind forecast may be used as a basis for forecasting ocean surface currents. NEURAL project consists of three modules: (i) the technological module which covers installation of new HF radars in the coastal area of the middle Adriatic, and implementation of data management procedures ; (ii) the research module which deals with an assessment of different combinations of input variables (radial vs. Cartesian vectors, original vs. detided vs. filtered series, WRF-ARW vs. Aladin meteorological model), all in order to get the best hindcasted surface currents ; and finally (iii) the operational module in which NWP operational products will be used for short-term forecasting of ocean surface currents. Both historical and newly observed HF radar data, as well as reanalysis and operational NWP model runs will be used within the (ii) and (iii) modules of the project. Finally, the observed, hindcasted and forecasted ocean current will be compared to the operational ROMS model outputs to compare skill reliability of the forecasting system based on neural network approach to the skill and reliability of numerical ocean models. We expect the forecasting system based on neural network approach to be more reliable than the one based on numerical ocean model as it is more exclusively based on measurements. Disadvantages of such a system are that it can be applied only in areas where long series surface currents measurements exist and where the recognized patterns can be properly ascribed to a forcing field.

Izvorni jezik
Engleski

Znanstvena područja
Geologija, Računarstvo



POVEZANOST RADA


Ustanove:
Institut za oceanografiju i ribarstvo, Split,
Državni hidrometeorološki zavod

Citiraj ovu publikaciju:

Vilibić, Ivica; Žagar, Nedjeljka; Cosoli, Simone; Dadić, Vlado; Ivanković, Damir; Jesenko, Blaž; Kalinić, Hrvoje; Mihanović, Hrvoje; Šepić, Jadranka; Tudor, Martina
Using Self-Organizing Maps in creation of an ocean forecasting system // AGU Fall Meeting
San Francisco (CA), Sjedinjene Američke Države, 2014. (predavanje, međunarodna recenzija, sažetak, znanstveni)
Vilibić, I., Žagar, N., Cosoli, S., Dadić, V., Ivanković, D., Jesenko, B., Kalinić, H., Mihanović, H., Šepić, J. & Tudor, M. (2014) Using Self-Organizing Maps in creation of an ocean forecasting system. U: AGU Fall Meeting.
@article{article, author = {Vilibi\'{c}, Ivica and \v{Z}agar, Nedjeljka and Cosoli, Simone and Dadi\'{c}, Vlado and Ivankovi\'{c}, Damir and Jesenko, Bla\v{z} and Kalini\'{c}, Hrvoje and Mihanovi\'{c}, Hrvoje and \v{S}epi\'{c}, Jadranka and Tudor, Martina}, year = {2014}, keywords = {neural networks, ocean forecasting, Adriatic Sea}, title = {Using Self-Organizing Maps in creation of an ocean forecasting system}, keyword = {neural networks, ocean forecasting, Adriatic Sea}, publisherplace = {San Francisco (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Vilibi\'{c}, Ivica and \v{Z}agar, Nedjeljka and Cosoli, Simone and Dadi\'{c}, Vlado and Ivankovi\'{c}, Damir and Jesenko, Bla\v{z} and Kalini\'{c}, Hrvoje and Mihanovi\'{c}, Hrvoje and \v{S}epi\'{c}, Jadranka and Tudor, Martina}, year = {2014}, keywords = {neural networks, ocean forecasting, Adriatic Sea}, title = {Using Self-Organizing Maps in creation of an ocean forecasting system}, keyword = {neural networks, ocean forecasting, Adriatic Sea}, publisherplace = {San Francisco (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }




Contrast
Increase Font
Decrease Font
Dyslexic Font