Pregled bibliografske jedinice broj: 744549
On a generalization of compensated compactness in the $L^p-L^q$ setting
On a generalization of compensated compactness in the $L^p-L^q$ setting // Journal of functional analysis, 268 (2015), 7; 1904-1927 doi:10.1016/j.jfa.2014.12.008 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 744549 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On a generalization of compensated compactness in the $L^p-L^q$ setting
Autori
Mišur, Marin ; Mitrović, Darko
Izvornik
Journal of functional analysis (0022-1236) 268
(2015), 7;
1904-1927
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
$L^p-L^q$ compensated compactness; H-distributions; non-strictly parabolic equations; weak convergence method
Sažetak
We investigate conditions under which, for two sequences $(\u_r)$ and $(\vv_r)$ weakly converging to $\u$ and $\vv$ in $L^p(\R^d ; \R^N)$ and $L^{; ; ; ; q}; ; ; ; (\R^d ; \R^N)$, respectively, $1/p+1/q \leq 1$, a quadratic form $q(\mx ; \u_r, \vv_r)=\sum\limits_{; ; ; ; j, m=1}; ; ; ; ^N q_{; ; ; ; j m}; ; ; ; (\mx)u_{; ; ; ; j r}; ; ; ; v_{; ; ; ; m r}; ; ; ; $ converges toward $q(\mx ; \u, \vv)$ in the sense of distributions. The conditions involve fractional derivatives and variable coefficients, and they represent a generalization of the known compensated compactness theory. The proofs are accomplished using a recently introduced $H$-distribution concept. We apply the developed techniques to a nonlinear (degenerate) parabolic equation.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-9780 - Metode slabih convergencija i primjene (WeConMApp) (Antonić, Nenad, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Darko Mitrović
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus