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a b s t r a c t

A large Ud theory is constructed for the metallic state of high-Tc cuprates. The Emery three-band model,
extended with Ox–Oy hopping tpp, and with → ∞Ud , is mapped on slave fermions. The Dyson time-
dependent diagrammatic theory in terms of the Cu–O hopping tpd, starting from the nondegenerate
unperturbed ground state, is translationally and asymptotically locally gauge invariant. The small para-
meter of the theory is the average hole occupation of Cu sites nd. The lowest order of the theory generates
the single particle propagators of the hybridized pdp- and dpd-fermions with the exact covalent three
band structure. The leading many-body effect is band narrowing, accompanied by Landau-like damping
of the single particle propagation, due to incoherent local charge Cu–O fluctuations. The corresponding
continuum is found below and above the Fermi level.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

The long standing question in high-Tc cuprates concerns the
nature of low-frequency interactions which are responsible for
superconductivity and other unusual properties of these materials.
These effective interactions are related to the interplay between
itinerancy and localization involving very large bare energy scales
that characterize the electronic subsystem. In particular, it is well
established that the Hubbard repulsion on copper sites Ud, which
forbids the Cu double occupancy by holes, is the largest bare en-
ergy parameter. This implies that other bare parameters are
strongly renormalized due to finite average hole occupation of Cu
sites and, as such, observed in experiments. Accordingly, we have
developed a strong-coupling diagrammatic perturbation formal-
ism which starts from a hybridized metallic copper–oxygen state
perturbed by forbidding the simultaneous double occupation on
coppers [1]. Technically, this is achieved here through slave-fer-
mion (spinful boson) formulation which avoids the usual but un-
desirable mean-field approximation.

Here, the physical expansion parameter turns out to be the
time and space averaged average hole concentration on copper. In
the absence of the mean field, the slave-particle propagators re-
main local (dispersionless), which introduces immediately (in low
order) a distinction between local and itinerant single electron
states. In our approach, the double occupied copper states at high
energies are at average empty and remain temporarily and spa-
tially unresolved. Apparently, this is a reasonable tradeoff when Ud

is large, i.e., in the charge transfer limit relevant for cuprates,
Δ < Upd d, with Δ ε ε= −pd p d, denoting the energy difference be-
tween the single occupied oxygen and copper sites. Referring to
the LDA and similar results [2], the double occupied oxygen con-
figuration is associated [3] with the energy 2εp, i.e., Up is con-
sidered as relatively small. This set of parameters was supple-
mented with the Cu–O hybridization tpd and often called the
Emery model [3] extended later [4,5] to include the O–O hopping
tpp.

The model is completed by fixing the total number of holes as
+ x1 per CuO2 unit cell, where x is the number of doped charge

carriers (holes), assuming that ≤x 1. The average single particle
occupations of the Cu and Ox y, sites nd and np are then linked by
the sum rule + = +n n x2 1d p , i.e. −n n2d p or nd itself is the “pri-
mary order parameter” of cuprates understood as Cu–O2 charge
transfer (CT) salts.

The aim of the current work is to exhibit key elements of our
diagrammatic treatment of the strong-coupling limit in terms of
slave particles and to explore low-order analytical expressions for
single-particle propagators, explaining their limiting behaviors.
Low-order calculations illustrate how the perturbation theory ac-
tually works and predict a window of (the “Fermi liquid”) coher-
ency in the single particle spectrum around the Fermi level. That
is, in addition to the metallic behavior [6,7] in the wide energy
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window around the Fermi level, incoherent dispersionless con-
tinua are obtained on the retarded and advanced sides of the
single hole spectra. The continua describe the effect on the test
hole of the incoherent localized Cu–O charge transfer [8] fluctua-
tions, precursors to the Mott localization. The advanced part is
observed in ARPES measurements. A recent study based on the
careful analysis of many ARPES experiments anticipates such type
of the coherency window [9,10]. However, while the latter con-
clusion is based on partially phenomenological construction of the
electron self-energy, in our case such behavior is obtained directly
from the large Ud perturbation theory for the extended Emery
model.
2. Slave fermion approach

It is well known that the = ∞Ud Hamiltonian can be mapped
on the slave particle Hamiltonian [12–14]. The empty hole d10

state on Cu at the position
→
R is denoted by | ˜ 〉→†f 0

R
and the single

occupied state d9 with spin s by | ˜ 〉
σ
→†b 0
R

, where | ˜ 〉0 is the auxiliary

vacuum on Cu. In the so spanned three-state space (double oc-
cupied hole state d8 with energy ε + U2 d d is omitted), the number
operators of the slave particles satisfy = + ∑ =σ

σ→ → →Q n n 1R fR bR
. The

physical fermion
σ
→†d
R

projected on the d9, d10 subspace is re-

presented by the operator →
σ σ
→† →† →d b f
R R R . The corresponding number

operators satisfy =σ σ→ →n n
dR bR

, usually called the “Luttinger sum rule”.

σ
→†b
R
and →†f

R
can be taken respectively as bosons and spinless fer-

mions (“slave fermion representation”) in order to satisfy the an-
ticommutation rules projected on the d9, d10 subspace for each Cu
site, as well as the commutation rules between this site and other
sites of the crystal.

In terms of these slave particles and p-fermions the Emery
Hamiltonian in the = ∞Ud limit is given by
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∑
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It is locally U (1) gauge invariant and commutes with the operator
→Q R . The O site energy εp and the O–O hopping tpp are included in

H0. On the other hand, HI is proportional to Cu–O hopping tpd equal
along both axes, which renders the Hamiltonian D4 symmetric.
The usual sign convention is <t 0pp , >t 0pd . In the hole picture,
cuprates are characterized by a positive charge transfer energy
Δ > 0pd .

H0 is defined by bare site energies εb and εf of bosons (spinons)
and chargons (spinles fermions) under restriction ε ε ε− =b f d

consistently with the composite representation →
σ σ
→† →† →d b f
R R R of the

truncated Fermi operator
σ
→†d
R
. We notice for later convenience that

the site energies εb and εf can be taken to include the slave particle
chemical potentials conjugated respectively to the mean number
of fermions nf and bosons nb. In this respect, ε ε−( )/2f b is the
“external field” conjugated to −n nf b and ε ε+( )/2f b to the U
(1) invariant charge + = =n n Q 1f b .
3. Diagrammatic perturbation theory

Our intention here is to treat the model (2) by using the time-
ordered diagrammatic perturbation theory in terms of the Cu–O
“coupling” tpd. Being concerned with metallic properties of cup-
rates a translationally and U(1) invariant paramagnetic un-
perturbed ground state is of special interest. The only eigenstate of
H0 with such properties puts all available charge 1þx on oxygens
and localizes one slave fermion

σ
→†f
R
on each Cu-site. Expressed in

the reciprocal space, such slave fermion state is strictly equivalent
to the completely filled dispersionless band of spinless fermions.
In this way, one gets the diagrammatic perturbation theory
amenable to direct application of Wick's time-ordering theorem in
the reciprocal space. Correlation functions in the reciprocal space
exhibit the localized phenomena as dispersionless features, while
itinerant ones are characterized by associated dispersions. How-
ever, as far as the U(1) invariance is concerned, the diagrammatic
perturbation theory obeys it only asymptotically, in the sense that
the hypothetical summation of all diagrams is required.

The elementary bricks which build the time-dependent per-
turbation theory according to Wick's theorem are the free-particle

propagators. Defining, as usual,
→

= − 〈 〉→ →†B k t i Tb b t( , ) ( )k k
,

→
= − 〈 〉→ →†F k t i Tf f t( , ) ( )k k

, we find that the free propagators of the b-

and f -particles are dispersionless,

ω ε η ω ε η
=

− +
=

− −
B

i
F

i
1

,
1

.
(4)b f

(0) (0)

Through η+i B(0) describes the intermittent creation of the b-par-
ticle, while, the spinless fermions can only be annihilated.

The d-particle propagator is mapped on

∑= − 〈 〉→ †
+ +

†D t i N T f b f t b t( ) ( / ) ( ) ( ) .
(5)

k
q

q k q q k q

→D
k
(0) is thus also dispersionless. With ε ε ε− =b f d, one obtains

ω ε η= − +→ −D i( )
k

d
(0) 1. Regarding oxygen sites, according to their

Fermi distribution →f
k
i( ) , the free propagators of 1þx p-particles

contain both η+i and η−i components ω
→>G k( , )p

i( ) and ω
→<G k( , )p

i( ) ,

associated with the = ˜i l l, bands. The corresponding chemical
potential is hereafter denoted by μ(0). With <x 1, only the states in
the l-band are occupied.

With free propagators defined, one may now derive general
expressions for the r-th order time-dependent perturbation the-
ory. According to the mapping of the d-hole on the slave particle-
hole pair, ω→D ( )

k
r( ) is given by the (generalized) Bethe–Salpeter

equation,

ω Σ ω Σ ω Γ ω Σ ω= +→ → − → − → → −D ( ) ( ) ( ) ( ) ( ). (6)k
r

k
r

k
r

k
r

k
r( ) ( 1) ( 1) ( ) ( 1)

Here, Σ→
k
r( ) is the quantity irreducible with respect to cutting the p-

lines and Γ ω→ ( )
k
r( ) is the renormalized four-leg vertex (“translation

propagator” [15]), given iteratively by the Dyson equation,

Γ ω Γ ω Γ ω Σ ω Γ ω= +→ → → → − →( ) ( ) ( ) ( ) ( ), (7)k
r

k k k
r

k
r( ) (0) (0) ( 1) ( )

in terms of the bare four-leg vertex Γ ω→ ( )
k
(0) , given by

∑Γ ω α ω α ω=
→

+
→−

→ →
<

= ˜
→

>t G k G k( ) ( , ) ( , ),
(8)

pd k k
l

p
l
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k

j
p
j2 (0) ( )2 ( )

,

( ) 2 ( )

with α→
k
j( ) given by Eq. (3). Eq. (8) generalizes the bare four-leg

vertex used previously [17] for =t 0pp .



Fig. 1. Lowest order renormalization for the slave particle propagators ωB ( ) and
ωF ( ), with arrows of time shown. The free propagators for the b and the f slave

particle are denoted by ωB ( )(0) and ωF ( )(0) , respectively, while ωP ( )(0) is the
p-propagator.
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3.1. r¼1 band structure

The lowest order Σ→
k
(0) is simply equal to D(0). In other words,

D(0) is not only the elementary d-particle propagator but also the
lowest order “local” irreducible self-energy for Γ→

k
(1) . The r¼1

procedure separates out the
→
k -independent d-propagator D(0) in

the leading pdp-particle self-energy on associating in Eq. (8) the
→
k -dependence of triangular vertices with the appropriate

→
k -de-

pendent weighting within the free translation propagator Γ−
→tpd
k

2 (0) .

Γ−
→tpd
k

2 (1) and →D
k
(1) in the Dyson form exhibit coherent poles be-

longing to three bands ω→
k
j( ) denoted by =j L I U, , . The poles ω→

k
j( ) in

Γ−
→tpd
k

2 (1) are associated with the residuals (spectral weights) →z
k
j( ) .

These spectral weights can be expressed entirely in terms of the
three ω→

k
j( ) . In particular, one may express first the spectral weight

→z
k
Ld( ) of the hole prepared on the Cu-site which propagates in the L-

band appearing in the in →D
k
(1) propagator according to Eq. (6). For

example, for the lowest band L, one obtains
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and similarly for other two bands. In the next step, somewhat
counter-intuitively, one gets that →z

k
L( ) and →z

k
Ld( ) are proportional,

ε ω= −→ → →( )t z z . (10)pd k
L

k
Ld

d
k

L2 ( ) ( ) ( )
2

The spectral weight →z
k
Lp( ) corresponding to the p-propagator of the

hole created symmetrically on two oxygen sites is given by
= −→ →z z1

k
Lp

k
Ld( ) ( ) [15].

The chemical potential μ(1) of the p-fermions is next defined as
the energy which positions in the upper and lower ω-plane poles
all common to the three kinds of propagators. This step fixes the
pole positions, consistently with the fermionic nature of the †b f
pairs. In contrast to μ(0), which defines the average number of p-
fermions on the O-sites, μ(1) can thus be conjugated to the average
number of particles in the coherent states on O and Cu sites. In
other words, μ Δ t t x( , , , )pd pd pp

(1) can be determined through the

average charge conservation rule + = +n n x2 1d p
(1) (1) , bearing in

mind that np
(1) and nd

(1) are defined by Eqs. (6) and (7) as functions

of the band parameters and μ(1). Thus, as a result of our strong-
coupling perturbation theory, the whole r¼1 procedure described
above amounts to the redistribution of the spectral weights and
the Fermi occupation factors →f

k
i( ) (with accompanying η±i 's) from

two oxygen bands = ˜i l l, and the empty d-state into the three
coherently hybridized Hartree-Fock (HF) bands ω→

k
j( ) , =j L I U, , of

covalent [16], itinerant noninteracting states.

3.2. r¼2 corrections and hole correlations

We turn next to the properties of the slave-particle propagators
ωB ( )(1) and ωF ( )(1) . In particular, these propagators will be used to

construct the next order r¼2 iteration of Eqs. (6) and (7), de-
scribing correlations between physical particles. The bubbles which
appear in Fig. 1 are the lowest order irreducible Dyson self en-
ergies for ωB ( )(1) and ωF ( )(1) . They both involve summation over
the occupied states in the l-band as indicated in Fig. 1 by the p-
propagator going (only) backwards in time.
The b-bubble is
→
k -independent (local), given by

∑β ω
ω ω ε η

=
− + + +→

→ →
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where →z
k
L( ) are the residues of the propagators Γ−

→tpd
k

2 (1) given by Eqs.

(9) and (10). The spinless fermion self-energy ϕ ω( )(1) has a
structure similar to Eq. (11),
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ω ω ε η
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Dealing with only a partial summation of the exact perturbative
series, the average U (1) invariance of spinon and chargon average

numbers nb
r( ) , n f

r( ) ,

= + =n n n n, 1, (13)b
r

d
r

f
r

b
r( ) ( ) ( ) ( )

is not achieved in general. However, this can be avoided by
treating εb

r( ) and ε f
r( ) as chemical potentials according to a scheme

given by

ω
ω ε η β ω

=
− + − −

B
i t

( )
1

( )
,

(14)
r

b
r

pd
r

( )
( ) 2 ( 1)

ω
ω ε η ϕ ω

=
− − − −

F
i t

( )
1

( )
,

(15)
r

f
r

pd
r

( )
( ) 2 ( 1)

where εb
r( ) and ε f

r( ) are fixed to obey Eq. (13). That is, in Eqs. (14)

and (15) the slave chemical potential pair, εb
r( ) and ε f

r( ) , is uniquely

determined by the two physical conditions (13) for nb
r( ) and n f

r( ) ,
with a particularly convenient property of keeping the average
U (1) symmetry iteratively, step by step in r. Since the exact
perturbation theory is locally gauge invariant, a reasonable con-
jecture is that the iterative sequence εb

r( ) and ε f
r( ) tends to εb

(0) and

ε f
(0) of the original Hamiltonian as r increases.
The spectral weight associated to the r¼1 boson and fermion

propagators is shown in Fig. 2 for band parameters Δ =t/ 3/2pd pd ,

= −t tpp pd and x¼0. As it may be observed from Fig. 2, ωλB ( )(1) can
be written in terms of one pole in the negative ω-half-plane and a
set of poles in the positive ω-half-plane, = +> <B B B(1) (1) (1) , and

↔f b symmetrically for = +< >F F F(1) (1) (1) (the superscripts < and
> denote arrows of time).

Once ωB ( )(1) and ωF ( )(1) have been determined, they can be

used to calculate Σ ∼ ⁎B F( )(1) (1) (1) in Eqs. (6) and (7), i.e. to advance

the iteration one step further to find the propagators →D
k
(2) and Γ→

k
(2)

of the physical particles. In particular, the relevant contributions to
the convolution Σ ∼ ⁎B F( )(1) (1) (1) come from the poles on the op-
posite sides of the ω-axis,



-4 0 4 / tpd

0
Im F(1)( )

Im B(1)( )

(a)(b) (d)

(c)

Fig. 2. The r¼1 boson and fermion propagators ωBIm ( )(1) and ωFIm ( )(1) (in ar-
bitrary unit) for x¼0 and for band parameters Δ =t/ 3/2pd pd , = −t tpp pd , i.e.

=n 0.4d
(1) . (a) Denotes the advancing boson pole >B(1) , (b) the receding pole <B(1)

detached from the dense set of receding poles and analogously (c) and
(d) respectively <F (1) and >F (1) for spinless fermion. In the numerical calculation
here the Brillouin zone is sampled by 1024

→
k points.

O.S. Barišić, S. Barišić / Physica B 460 (2015) 141–146144
Σ Σ Σ

π

= +

= − * + *

> <

> < < >i
B F B F

2
( ). (16)

(1) (1) (1)

(1) (1) (1) (1)
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The spectral weight of the leading pole Σ >(1) of Eq. (17) de-
scribes the average reduction in the availability of the given Cu-
site for the free propagation of the additional hole due to in-
coherent Cu–O fluctuations of the permanent holes. The quantity
n n /2b f

(1) (1) can thus be understood as the average projector which
removes the d-states from the coherent propagation. The reduc-
tion of Σ >(1) is nominally quadratic in tpd since such are the generic
contributions to nb

(1) and − n1 f
(1) .

In contrast to Σ >(1) , the receding η− i( ) continuum of Σ <(1)

describes the dynamic local disorder due to Cu–O charge transfer
fluctuations. In the limit → ∞N , Σ <Im (1) for nd

(1) small is a step-like

function finite in the range μ ε ω ω ε− > > −2 2d M d
(1) , where ωM is

the minimum of the conducting L band. tpd4 in Eq. (18) for Σ <(1) is
exhibited in order to stress that the generic term in the tpd ex-
pansion of Σ <(1) is nominally quartic in tpd which results in the
total spectral weight associated with the set of dense poles (con-
tinuum) equal to n( )d

(1) 2. Apparently, already this result goes well
beyond the HF or many HF-inspired theories.

3.2.1. r¼2 pdp propagator
The translation propagator Γ−

→tpd
k

2 (2) is determined by Σ (1) ac-

cording to Eq. (7). Thus it also undergoes a modification of the
coherent spectral weight and exhibits the effects of dynamical Cu–
O disorder. Let us thus consider this propagator in some detail. In
the first step we keep Σ >(1) but omit Σ <(1) . Eq. (7) for Γ→

k
(2) com-

bined with Σ >(1) gives then the band narrowing and the relatively
small renormalization of the CT gap, while εp, as well as tpp, remain
unaffected,

→ = +t t t n n(1
1
2

) ,pd pd pd b f
2 (1)2 2 (1) (1)

Δ Δ ε ε Δ β ω ε λ→ = − = + = +λ ( ), (19)pd pd p d pd d
(1) (1) (1) (1)

For nd
(1) small one obtains → −t t n(1 /2)pd pd d

2 2 (1) . Such re-
normalization is about half of that predicted [11,18] by the mean
field slave boson theory. Concomitantly, Δpd

(1) is somewhat de-

creased with respect to Δpd similarly to the mean field slave boson
theory.

Next we include Σ ω< ( )(1) perturbatively and get

∑Γ ω
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ω ω η Σ
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− + +
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where η η μ ω= − →sgn( )S j k
(2)

,
(2) and μ(2) remains to be determined.

For simplicity, Σ→ <z Re
j k,
(2) (1) is omitted above, being related to the

presumably small (logarithmic) corrections. The poles ω →
j k,
(2) are

thus given by the coherent band narrowing of Eq. (19) and the
residues →z

L k,
(2) , which correspond to ω →

j k,
(2) , are obtained from Eq. (9)

upgraded to r¼2.
Σ <Im (1) generates contributions to Γ−

→tpd
k

2 (2) beyond the coherent

band narrowing. Apparently, the effect of Σ <Im (1) should be in-
terpreted as inelastic Landau-like damping of the coherent pdp
propagation by incoherent †b f pairs, i.e., by local incoherent Cu–O
charge transfer fluctuations. As well known, the Landau damping
corresponds to energy, rather than to momentum relaxation. The
corresponding pseudo-particle width is then conveniently ap-
proximated by a remarkably transparent expression

π
τ

Σ ω=
→

→ < →t z
2

Im ( ).
(21)k

pd L k L k(2)
2

,
(2) (1)

,
(2)

Σ <Im (1) is taken here at ω ω= →
L k,
(2) , characterizing the broadening of

the Dirac functions into the Lorentzians. On the other hand, ac-
cording to Eq. (9), the weight of the affected d-states is measured
by →z

L k,
(2) .

Turning now to the sum rules we note that the Lorentzian τ→
k
(2)

of Eq. (21) does not affect the renormalized HF contribution np
HF(2 )

to np
(2) . For a given chemical potential μ(2) we thus have

≈ +n n n . (22)p p
HF

p
inc(2) (2 ) (2 )

where np
inc(2 ) is the correction to the Lorentzian approximation.

This term, which includes the variation of Σ <Im (1) far from the
band, can be neglected on the simplest level.

3.2.2. r¼2 dpd-propagator, sum rules and the chemical potential
In contrast to the translation and pdp propagators, the r¼2

dpd-propagator given by Bethe–Salpeter Eq. (6) entirely reveals
the local Cu–O fluctuations. Beside the coherent and Landau
damped propagation, its first term exhibits Σ <Im (1) of Eq. (18)
which is finite not only above but also below the bottom of the
L(2)-band, all over the Brillouin zone in the frequency range

ω ε ω μ ε− < < −2 2M d d
(1) , where the coherent hybridization is

absent.
Concerning first the coherent dpd propagation, Eq. (6) shows

that some of the coherent spectral weight on copper is removed,
i.e. the latter is depleted to = +→ →z n n z(1 )

j k
d

b f j k
dHF

,
(2 ) 1

2
(1) (1)

,
(2 ) . Here
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Fig. 3. The r¼3 single-hole spectral weight projected on the Cu and the O site, with
Δ = 1 eVpd , = − =t t 0.7 eVpd pp , x¼0.2, shown along high symmetry lines of the
Brillouin zone Γ Γ− − −X M . The full line denotes the Fermi level EF. Notice the
formation of the coherency window between the two dashed lines.
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→z
j k

dHF
,

(2 ) is the r¼2 renormalized HF spectral weight defined by the

self-energy Σ >(1) of Eq. (17) divided by + n n(1 /2)b f
(1) (1) and given

by the upgraded Eq. (9). Due to such depletion of the coherent
spectral weight z j

d(2 ) the first, coherent term in nd
(2) of Eq. (23) is

somewhat smaller than nd
HF(2 ) calculated from the renormalized HF

bands for a given chemical potential μ(2). E.g. for
≈ ≈ −n n n1d b f

(1) (1) (1) small Eq. (23) can be used, on linearizing in

terms of −n nd
HF

d
(2 ) (1) , to write ≈ −n n n( ) /2d

coh
d

HF
d

(2 ) (2 ) (1) 2 . In this
sense it can be said that the r¼2 HF band plays an auxiliary role.

In contrast to that, the propagation in the incoherent frequency
range is dominated by the first term Σ <Im (1) in Eq. (6), explicitly
related to the local Cu–O fluctuations. The locality of this term is
the precursor of the Mott localization within the CuO2 unit cell,
which occurs for other choices of x and/or band parameters. In the
simplest approximation nd

inc(2 ) is obtained by integrating Σ <Im (1)

of Eq. (18), with the particularly simple result, namely
= −n n n(1 )d

inc
b f

(2 ) (1) (1) which reduces to ≈n n( )d
inc

d
(2 ) (1) 2 for nd

(1)

small.
The coherent Σ >(1) and incoherent Σ <(1) components contribute

then essentially additively to average occupations of the Cu sites,
i.e. ≈ +n n nd d

coh
d

inc(2) (2 ) (2 ) . We have therefore

⎛
⎝⎜

⎞
⎠⎟≈ + +n n n n n1

1
2

.
(23)d b f d

HF
d

inc(2) (1) (1) (2 ) (2 )

Putting these two contributions to nd
(2) together on keeping in

mind that nd
HF(2 ) depends, as well as np

HF(2 ) , on the chemical po-

tential μ(2) one finds this latter from the sum rule
+ = +n n x2 1d p

(2) (2) . This is well illustrated for nd
(1) small on writing

+

≈ +

= + −

= −

n n

x x

x n n

x n

2

1 ,

1
2
1
2

( ) . (24)

d
HF

p
HF

eff eff

d d
inc

d

(2 ) (2 )

(2) (2)

(1)2 (2 )

(1) 2

μ(2) corresponds thus to the HF chemical potential for the effective
doping + x1 eff

(2) reduced with respect to + x1 . Such + x1 eff
(2) is put

into the L(2)-band renormalized according to Eq. (19). The conven-
tional Luttinger sum rule for the band states (to be distinguished
from the Luttinger sum rule nd¼nb) is broken. The reason is that
the occupied localized disorder states on copper carry more
spectral weight than transferred on copper from the occupied
itinerant states. The departure from the conventional Luttinger
sum rule is however small for nd

(1) small. The whole procedure

results in >n nd d
(2) (1) , i.e., the local Cu–O fluctuations increase the

average copper occupation with respect to its HF values nd
(1) and

nd
HF(2 ) .
It can be finally emphasized that the r¼2 results appear above

as an expansion in terms of nd
(1) . The present theory, where d¼2

explicitly, is thus not an expansion in the number of dimensions or
in large orbital and/or spin degeneracy. Even the → ∞N limit is
unessential here, used only for the analytic calculation of the
coefficients nb

(1) , n f
(1) , ε̃d, ′

→ →Ak k, , ω̃→
k
L( ) in Eqs. (17) and (18).

3.3. r¼3 contributions

The r¼2 theory described above in some detail illustrates how
to analytically derive important features of the single-hole states
in presence of large Ud on copper. Next we turn to the r¼3 step of
the diagrammatic expansion. If the four-leg effective kinematical
interactions [19], quartic in tpd, are neglected, which is justified
well away from the Fermi level, the r¼2 and r¼3 theories are
similar in principle. Essentially, what r¼2 theory does to the re-
tarded hole continua, r¼3 theory does to the advanced continua.
Some preliminary r¼3 numerical results are shown in Fig. 3.

The results for the r¼3 single-hole spectral weight projected

on copper and oxygen sites, as functions of
→
k and ω, are shown in

Fig. 3, for a set of bare parameters that mimic typical behaviors in
cuprates, Δ = 1 eVpd , = − =t t 0.7 eVpd pp . Standard cuts through
the Brillouin zone are considered, setting the doping in Fig. 3 to
x¼0.2. Few characteristic spectral behaviors are immediately ob-
served. The first is the coherent conduction band that intersects
the Fermi energy EF, given by the red line. At elevated frequencies,
denoted by the two dashed lines, this band enters broad continua,
found on the retarded and the advanced side of the r¼3 spectra,
the latter observable in ARPES measurements. That is, the in-
coherent spectral weight above the Fermi energy in Fig. 3 is found
approximately for frequencies ω − ≳E 0.4 eVF , in very good
agreement with ARPES experiments for various hole-doped cup-
rates. Evaluated depletion of the coherent spectral weight also
agrees with that deduced phenomenologically from conduction
measurements [20]. Most of other properties examined within the
present scheme are consistent with only three single particle
parameters Δpd, tpd, tpp used here, as will be discussed elsewhere.
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The kind of itinerant-localized, coherent-incoherent dichotomy
in single-hole spectra, seen in Fig. 3, is usually referred to, in the
context of ARPES measurements, as the high-energy anomaly
(HEA) [21]. For electron doped cuprates, <x 0, the HEA is reported
at approximately twice as large frequency as for the hole doped
cuprates, 0.8 vs. 0.4 eV [22–27]. This is exactly what one obtains
within the r¼3 calculations, by summing the non-crossing dia-
grams. Such result is easy to visualize. As x increases and the Fermi
level approaches εd, the local charge Cu–O fluctuations spread out,
narrowing the window of coherency around the Fermi level, ob-
tained in Fig. 3.

Besides the window of coherency around the Fermi level
(where incoherencies might appear due to kinematical interac-
tions), the diagrammatic calculations predict additional, doping
dependent effects. In particular, regarding the coherent part of the
spectrum, the band dispersions become weaker as x increases. The
corresponding spectral weights get depleted in contrast to in-
coherent features which are enhanced. For example, one finds that
the nodal velocity at the Fermi level decreases with increasing
hole concentration x, clearly indicating a stronger quasi-particle
renormalization. Increasing x means increasing mean occupation
of copper sites, i.e., increasing strength of correlations. Such be-
haviors have been recently observed by ARPES measurements on
electron and hole doped cuprates [10,28,29].
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