Pregled bibliografske jedinice broj: 734963
Recurrence and transience criteria for two cases of stable-like Markov chains
Recurrence and transience criteria for two cases of stable-like Markov chains // Journal of theoretical probability, 27 (2014), 3; 754-788 doi:10.1007/s10959-012-0445-0 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 734963 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Recurrence and transience criteria for two cases of stable-like Markov chains
Autori
Sandrić, Nikola
Izvornik
Journal of theoretical probability (0894-9840) 27
(2014), 3;
754-788
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
characteristics of semimartingale; Feller process; Harris recurrence; Markov chain; Markov process; recurrence; stable distribution; stable-like process; T-model; transience
Sažetak
We give recurrence and transience criteria for two cases of time-homogeneous Markov chains on the real line with transition kernel $p(x, dy)=f_x(y-x)dy$, where $f_x(y)$ are probability densities of symmetric distributions and, for large $|y|$, have a power-law decay with exponent $\alpha(x)+1$, with $\alpha(x)\in(0, 2)$. If $f_x(y)$ is the density of a symmetric $\alpha$-stable distribution for negative $x$ and the density of a symmetric $\beta$-stable distribution for non-negative $x$, where $\alpha, \beta\in(0, 2)$, then the chain is recurrent if and only if $\alpha+\beta\geq2.$ If the function $x\longmapsto f_x$ is periodic and if the set $\{; ; ; x:\alpha(x)=\alpha_0:=\inf_{; ; ; x\in\R}; ; ; \alpha(x)\}; ; ; $ has positive Lebesgue measure, then, under a uniformity condition on the densities $f_x(y)$ and some mild technical conditions, the chain is recurrent if and only if $\alpha_0\geq1.$
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet