Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 722585

Decay Mechanisms of Protonated 4-Quinolone Antibiotics After Electrospray Ionization and Ion Activation


Kovačević, Borislav; Schorr, Pascal; Qi, Yulin; Volmer, Dietrich A.
Decay Mechanisms of Protonated 4-Quinolone Antibiotics After Electrospray Ionization and Ion Activation // Journal of the American Society for Mass Spectrometry, 25 (2014), 11; 1974-1986 doi:10.1007/s13361-014-0972-2 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 722585 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Decay Mechanisms of Protonated 4-Quinolone Antibiotics After Electrospray Ionization and Ion Activation

Autori
Kovačević, Borislav ; Schorr, Pascal ; Qi, Yulin ; Volmer, Dietrich A.

Izvornik
Journal of the American Society for Mass Spectrometry (1044-0305) 25 (2014), 11; 1974-1986

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
4-Quinolones; Zwitterions; Isomers; Electrospray ionization; Gas-phase basicity; Proton affinity; Collision induced dissociation; Density functional theory

Sažetak
This study presents a detailed experimental investigation of charge isomers of protonated 4-quinolone antibiotics molecules formed during electrospray ionization (ESI) with proposed dissociation mechanisms after collisional activation. Piperazinyl quinolones have been previously shown to exhibit erratic behavior during tandem MS analyses of biological samples, which originated from varying ratios of two isomeric variants formed during ESI. Here, a combination of ESI-collision-induced dissociation (CID), differential ion mobility spectrometry (DMS), high resolution MS, and density functional theory (DFT) was used to investigate the underlying mechanisms of isomer formation and their individual dissociation behaviors. The study focused on ciprofloxacin ; major findings were confirmed using structurally related 4-quinolones. DFT calculations showed a reversal of basicity for piperazinyl quinolones between liquid and gas phase. We provide an experimental comparison and theoretical treatment of factors influencing the formation ratio of the charge isomers during ESI, including solvent pH, protic/aprotic nature of solvent, and structural effects such as pK a and proton affinity. The actual dissociation mechanisms of the isomers of the protonated molecules were studied by separating the individual isomers via DMS-MS, which allowed type-specific CID spectra to be recorded. Both primary CID reactions of the two charge isomers originated from the same carboxyl group by charge-remote (CO2 loss) and charge-mediated (H2O loss) fragmentation of the piperazinyl quinolones, depending on whether the proton resides on the more basic keto or the piperazinyl group, followed by a number of secondary dissociation reactions. The proposed mechanisms were supported by calculated energies of precursors, transition states, and products for competing pathways.

Izvorni jezik
Engleski

Znanstvena područja
Kemija



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Borislav Kovačević (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Kovačević, Borislav; Schorr, Pascal; Qi, Yulin; Volmer, Dietrich A.
Decay Mechanisms of Protonated 4-Quinolone Antibiotics After Electrospray Ionization and Ion Activation // Journal of the American Society for Mass Spectrometry, 25 (2014), 11; 1974-1986 doi:10.1007/s13361-014-0972-2 (međunarodna recenzija, članak, znanstveni)
Kovačević, B., Schorr, P., Qi, Y. & Volmer, D. (2014) Decay Mechanisms of Protonated 4-Quinolone Antibiotics After Electrospray Ionization and Ion Activation. Journal of the American Society for Mass Spectrometry, 25 (11), 1974-1986 doi:10.1007/s13361-014-0972-2.
@article{article, author = {Kova\v{c}evi\'{c}, Borislav and Schorr, Pascal and Qi, Yulin and Volmer, Dietrich A.}, year = {2014}, pages = {1974-1986}, DOI = {10.1007/s13361-014-0972-2}, keywords = {4-Quinolones, Zwitterions, Isomers, Electrospray ionization, Gas-phase basicity, Proton affinity, Collision induced dissociation, Density functional theory}, journal = {Journal of the American Society for Mass Spectrometry}, doi = {10.1007/s13361-014-0972-2}, volume = {25}, number = {11}, issn = {1044-0305}, title = {Decay Mechanisms of Protonated 4-Quinolone Antibiotics After Electrospray Ionization and Ion Activation}, keyword = {4-Quinolones, Zwitterions, Isomers, Electrospray ionization, Gas-phase basicity, Proton affinity, Collision induced dissociation, Density functional theory} }
@article{article, author = {Kova\v{c}evi\'{c}, Borislav and Schorr, Pascal and Qi, Yulin and Volmer, Dietrich A.}, year = {2014}, pages = {1974-1986}, DOI = {10.1007/s13361-014-0972-2}, keywords = {4-Quinolones, Zwitterions, Isomers, Electrospray ionization, Gas-phase basicity, Proton affinity, Collision induced dissociation, Density functional theory}, journal = {Journal of the American Society for Mass Spectrometry}, doi = {10.1007/s13361-014-0972-2}, volume = {25}, number = {11}, issn = {1044-0305}, title = {Decay Mechanisms of Protonated 4-Quinolone Antibiotics After Electrospray Ionization and Ion Activation}, keyword = {4-Quinolones, Zwitterions, Isomers, Electrospray ionization, Gas-phase basicity, Proton affinity, Collision induced dissociation, Density functional theory} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font