Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 721400

Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation


Čanić, Sunčica; Muha, Boris; Bukač, Martina
Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation // Fluid-Structure Interaction and Biomedical Applications / Bodnár, Tomáš ; Galdi, Giovanni P. ; Nečasová, Šárka (ur.).
Basel: Springer, 2014. str. 79-195 doi:10.1007/978-3-0348-0822-4_2


CROSBI ID: 721400 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation

Autori
Čanić, Sunčica ; Muha, Boris ; Bukač, Martina

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
Fluid-Structure Interaction and Biomedical Applications

Urednik/ci
Bodnár, Tomáš ; Galdi, Giovanni P. ; Nečasová, Šárka

Izdavač
Springer

Grad
Basel

Godina
2014

Raspon stranica
79-195

ISBN
978-3-0348-0821-7

Ključne riječi
Aeroelasticity, ALE method, Biomechanics of voice, Compressible flow, Coupling algorithm, Discontinuous Galerkin method, Dynamic elasticity problem, Fluid–structure interaction, Navier–Stokes equations, Stabilized finite element method, Time and space discretization, Two degrees of freedom model, Vocal folds

Sažetak
Fluid–structure interaction (FSI) problems arise in many applications. They include multi-physics problems in engineering such as aeroelasticity and propeller turbines, as well as biofluidic application such as self-propulsion organisms, fluid–cell interactions, and the interaction between blood flow and cardiovascular tissue. A comprehensive study of these problems remains to be a challenge due to their strong nonlinearity and multi-physics nature. To make things worse, in many biological applications the structure is composed of several layers, each with different mechanical characteristics. This is, for example, the case with arterial walls, which are composed of three main layers: the intima, media, and adventitia, separated by thin elastic laminae. A stable and efficient FSI solver that simulates the interaction between an incompressible, viscous fluid and a multi-layered structure would be an indispensable tool for the computational studies of solutions. The multi-physics nature of this class of problems suggests the use of partitioned, modular algorithms based on an operator splitting approach that would separate the different physics in the problem. This chapter presents such a scheme, which can be used not only in computations, but also to prove existence of weak solutions to this class of problems. Particular attention will be payed to multi-physics FSI problems involving structures consisting of multiple layers.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
MZOS-037-0693014-2765 - Matematička analiza kompozitnih i tankih struktura (Tutek, Zvonimir, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Boris Muha (autor)

Avatar Url Sunčica Čanić-Mirković (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com link.springer.com

Citiraj ovu publikaciju:

Čanić, Sunčica; Muha, Boris; Bukač, Martina
Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation // Fluid-Structure Interaction and Biomedical Applications / Bodnár, Tomáš ; Galdi, Giovanni P. ; Nečasová, Šárka (ur.).
Basel: Springer, 2014. str. 79-195 doi:10.1007/978-3-0348-0822-4_2
Čanić, S., Muha, B. & Bukač, M. (2014) Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation. U: Bodnár, T., Galdi, G. & Nečasová, Š. (ur.) Fluid-Structure Interaction and Biomedical Applications. Basel, Springer, str. 79-195 doi:10.1007/978-3-0348-0822-4_2.
@inbook{inbook, author = {\v{C}ani\'{c}, Sun\v{c}ica and Muha, Boris and Buka\v{c}, Martina}, year = {2014}, pages = {79-195}, DOI = {10.1007/978-3-0348-0822-4\_2}, keywords = {Aeroelasticity, ALE method, Biomechanics of voice, Compressible flow, Coupling algorithm, Discontinuous Galerkin method, Dynamic elasticity problem, Fluid–structure interaction, Navier–Stokes equations, Stabilized finite element method, Time and space discretization, Two degrees of freedom model, Vocal folds}, doi = {10.1007/978-3-0348-0822-4\_2}, isbn = {978-3-0348-0821-7}, title = {Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation}, keyword = {Aeroelasticity, ALE method, Biomechanics of voice, Compressible flow, Coupling algorithm, Discontinuous Galerkin method, Dynamic elasticity problem, Fluid–structure interaction, Navier–Stokes equations, Stabilized finite element method, Time and space discretization, Two degrees of freedom model, Vocal folds}, publisher = {Springer}, publisherplace = {Basel} }
@inbook{inbook, author = {\v{C}ani\'{c}, Sun\v{c}ica and Muha, Boris and Buka\v{c}, Martina}, year = {2014}, pages = {79-195}, DOI = {10.1007/978-3-0348-0822-4\_2}, keywords = {Aeroelasticity, ALE method, Biomechanics of voice, Compressible flow, Coupling algorithm, Discontinuous Galerkin method, Dynamic elasticity problem, Fluid–structure interaction, Navier–Stokes equations, Stabilized finite element method, Time and space discretization, Two degrees of freedom model, Vocal folds}, doi = {10.1007/978-3-0348-0822-4\_2}, isbn = {978-3-0348-0821-7}, title = {Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation}, keyword = {Aeroelasticity, ALE method, Biomechanics of voice, Compressible flow, Coupling algorithm, Discontinuous Galerkin method, Dynamic elasticity problem, Fluid–structure interaction, Navier–Stokes equations, Stabilized finite element method, Time and space discretization, Two degrees of freedom model, Vocal folds}, publisher = {Springer}, publisherplace = {Basel} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font