Pregled bibliografske jedinice broj: 715485
Non-accumulation of critical points of the Poincaré time on hyperbolic polycycles
Non-accumulation of critical points of the Poincaré time on hyperbolic polycycles // Proceedings of the American Mathematical Society, 135 (2007), 10; 3273-3282 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 715485 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Non-accumulation of critical points of the Poincaré time on hyperbolic polycycles
Autori
Mardešić, Pavao ; Saavedra, Mariana
Izvornik
Proceedings of the American Mathematical Society (0002-9939) 135
(2007), 10;
3273-3282
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Critical period; finiteness; non-accumulation; quasi-analyticity; Dulac problem.
Sažetak
We call Poincaré time the time associated to the Poincaré (or first return) map of a vector field. In this paper we prove the non-accumulation of isolated critical points of the Poincaré time T on hyperbolic polycycles of polynomial vector fields. The result is obtained by proving that the Poincaré time of a hyperbolic polycycle either has an unbounded principal part or is an almost regular function. The result relies heavily on the proof of Ilyashenko's theorem on non-accumulation of limit cycles on hyperbolic polycycles.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts