Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 715442

Pseudo-Abelian integrals : unfolding generic exponential


Bobieński, Marcin; Mardešić, Pavao; Novikov, Dmitry
Pseudo-Abelian integrals : unfolding generic exponential // Journal of differential equations, 247 (2009), 12; 3357-3376 doi:10.1016/j.jde.2009.06.019 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 715442 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Pseudo-Abelian integrals : unfolding generic exponential
(Pseudo-Abelian integrals: unfolding generic exponential)

Autori
Bobieński, Marcin ; Mardešić, Pavao ; Novikov, Dmitry

Izvornik
Journal of differential equations (0022-0396) 247 (2009), 12; 3357-3376

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
pseudo-abelian integral; Darboux integrable

Sažetak
The search for bounds on the number of zeroes of Abelian integrals is motivated, for instance, by a weak version of Hilbert's 16th problem (second part). In that case one considers planar polynomial Hamiltonian perturbations of a suitable polynomial Hamiltonian system, having a closed separatrix bounding an area filled by closed orbits and an equilibrium. Abelian integrals arise as the first derivative of the displacement function with respect to the energy level. The existence of a bound on the number of zeroes of these integrals has been obtained by A. N. Varchenko [Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 14–25 ; and A. G. Khovanskii [Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 40–50. The present article is devoted to the search for the extension of the result of Varchenko and Khovanskii in the case of a (generalized) Darboux integrable planar system. Hence the unperturbed system is the real closed $1$-form $$ \theta_0 = d \log H_0, $$ where $H_0 = P_1^{; ; a_1}; ; \cdots P_k^{; ; a_k}; ; e^{; ; RQ}; ; $, and the unfolding $\theta_{; ; \varepsilon , \alpha}; ; $ of the unperturbed system is (generalized) Darboux integrable and has a maximal nest of cycles each contained in the $h$-level of the integral, $h \in (0, b(\varepsilon , \alpha))$. Then pseudo-Abelian integrals $I_{; ; \varepsilon , \alpha}; ; $ appear as the linear term with respect to $\delta$ of the displacement function of a polynomial deformation $$ M \theta_{; ; \varepsilon , \alpha}; ; + \delta \eta, $$ where $\eta$ is a polynomial $1$-form of degree $n$ and $M= {; ; Q(Q+\varepsilon R)P_1 \cdots P_k}; ; $. The main result in this article is the existence of a bound for the number of isolated zeroes of the pseudo-Abelian integrals$I_{; ; \varepsilon , \alpha}; ; $ under the genericity hypothesis that the curves $P_J^{; ; -1}; ; (0)$ and $Q^{; ; -1}; ; (0)$ are smooth and intersect transversally.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Profili:

Avatar Url Pavao Mardešić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Bobieński, Marcin; Mardešić, Pavao; Novikov, Dmitry
Pseudo-Abelian integrals : unfolding generic exponential // Journal of differential equations, 247 (2009), 12; 3357-3376 doi:10.1016/j.jde.2009.06.019 (međunarodna recenzija, članak, znanstveni)
Bobieński, M., Mardešić, P. & Novikov, D. (2009) Pseudo-Abelian integrals : unfolding generic exponential. Journal of differential equations, 247 (12), 3357-3376 doi:10.1016/j.jde.2009.06.019.
@article{article, author = {Bobie\'{n}ski, Marcin and Marde\v{s}i\'{c}, Pavao and Novikov, Dmitry}, year = {2009}, pages = {3357-3376}, DOI = {10.1016/j.jde.2009.06.019}, keywords = {pseudo-abelian integral, Darboux integrable}, journal = {Journal of differential equations}, doi = {10.1016/j.jde.2009.06.019}, volume = {247}, number = {12}, issn = {0022-0396}, title = {Pseudo-Abelian integrals : unfolding generic exponential}, keyword = {pseudo-abelian integral, Darboux integrable} }
@article{article, author = {Bobie\'{n}ski, Marcin and Marde\v{s}i\'{c}, Pavao and Novikov, Dmitry}, year = {2009}, pages = {3357-3376}, DOI = {10.1016/j.jde.2009.06.019}, keywords = {pseudo-abelian integral, Darboux integrable}, journal = {Journal of differential equations}, doi = {10.1016/j.jde.2009.06.019}, volume = {247}, number = {12}, issn = {0022-0396}, title = {Pseudo-Abelian integrals: unfolding generic exponential}, keyword = {pseudo-abelian integral, Darboux integrable} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Zentrallblatt für Mathematik/Mathematical Abstracts
  • Mathscinet, Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font