Pregled bibliografske jedinice broj: 715433
Principal part of multi-parameter displacement functions
Principal part of multi-parameter displacement functions // Bulletin des sciences mathématiques, 136 (2012), 7; 752-762 doi:10.1016/j.bulsci.2012.02.006 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 715433 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Principal part of multi-parameter displacement functions
Autori
Mardešić, Pavao ; Saavedra, Mariana ; Uribe, Marco
Izvornik
Bulletin des sciences mathématiques (0007-4497) 136
(2012), 7;
752-762
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Hamiltonian system; perturbation; triangle center
Sažetak
This paper deals with a perturbation problem from a period annulus, for an analytic Hamiltonian system [J.-P. Françoise, Ergodic Theory Dynam. Systems 16 (1996), no. 1, 87–96 ; L. Gavrilov, Ann. Fac. Sci. Toulouse Math. (6) 14(2005), no. 4, 663–682. The authors consider the planar polynomial multi-parameter deformations and determine the coefficients in the expansion of the displacement function generated on a transversal section to the period annulus. Their first result gives a generalization to the Françoise algorithm for a one-parameter family, following [J.-P. Françoise and M. Pelletier, J. Dyn. Control Syst. 12 (2006), no. 3, 357–369. The second result expresses the principal terms in the division of the displacement function in the Bautin ideal. The methods are illustrated with interesting examples, such as the versal unfolding of the Hamiltonian triangle center.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Zentrallblatt für Mathematik/Mathematical Abstracts
- Mathscinet, Scopus