Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 715023

Tool Wear Classification Using Decision Trees in Stone Drilling Applications: A Preliminary Study


Klaic, Miho; Staroveški, Tomislav; Udiljak, Toma
Tool Wear Classification Using Decision Trees in Stone Drilling Applications: A Preliminary Study // Procedia Engineering / Branko Katalinic (ur.).
Zadar, Hrvatska: Procedia Engineering, 2013. str. 1326-1335 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 715023 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Tool Wear Classification Using Decision Trees in Stone Drilling Applications: A Preliminary Study

Autori
Klaic, Miho ; Staroveški, Tomislav ; Udiljak, Toma

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Procedia Engineering / Branko Katalinic - : Procedia Engineering, 2013, 1326-1335

Skup
24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2013

Mjesto i datum
Zadar, Hrvatska, 23.10.2013. - 26.10.2013

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
tool wear; stone drilling; tool condition monitoring; machine learning

Sažetak
Process parameters of stone drilling with a small diameter twist drill were used to predict tool wear by means of a machine learning decision tree algorithm. The model links tool wear with features extracted from the force sensor and the main and feed drive current sensors signals recorded under different cutting conditions and different tool wear states. Signal features extracted from both the time and frequency domain were used as input parameters for construction of a decision tree which classifies the tool state into sharp or worn. The model was refined by selecting only the feature sources most important for classification. The best model achieves 90% accuracy in classification and relies only on features of the current signals, which simplifies its implementation in a CNC system for industrial applications.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Tomislav Staroveški (autor)

Avatar Url Toma Udiljak (autor)

Avatar Url Miho Klaić (autor)

Citiraj ovu publikaciju:

Klaic, Miho; Staroveški, Tomislav; Udiljak, Toma
Tool Wear Classification Using Decision Trees in Stone Drilling Applications: A Preliminary Study // Procedia Engineering / Branko Katalinic (ur.).
Zadar, Hrvatska: Procedia Engineering, 2013. str. 1326-1335 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Klaic, M., Staroveški, T. & Udiljak, T. (2013) Tool Wear Classification Using Decision Trees in Stone Drilling Applications: A Preliminary Study. U: Branko Katalinic (ur.)Procedia Engineering.
@article{article, author = {Klaic, Miho and Starove\v{s}ki, Tomislav and Udiljak, Toma}, year = {2013}, pages = {1326-1335}, keywords = {tool wear, stone drilling, tool condition monitoring, machine learning}, title = {Tool Wear Classification Using Decision Trees in Stone Drilling Applications: A Preliminary Study}, keyword = {tool wear, stone drilling, tool condition monitoring, machine learning}, publisher = {Procedia Engineering}, publisherplace = {Zadar, Hrvatska} }
@article{article, author = {Klaic, Miho and Starove\v{s}ki, Tomislav and Udiljak, Toma}, year = {2013}, pages = {1326-1335}, keywords = {tool wear, stone drilling, tool condition monitoring, machine learning}, title = {Tool Wear Classification Using Decision Trees in Stone Drilling Applications: A Preliminary Study}, keyword = {tool wear, stone drilling, tool condition monitoring, machine learning}, publisher = {Procedia Engineering}, publisherplace = {Zadar, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font