Pregled bibliografske jedinice broj: 714976
Weighted Ensemble Based Automatic Detection of Exudates in Fundus Photographs
Weighted Ensemble Based Automatic Detection of Exudates in Fundus Photographs // Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Chicago (IL), Sjedinjene Američke Države, 2014. str. 138-141 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 714976 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Weighted Ensemble Based Automatic Detection of Exudates in Fundus Photographs
Autori
Prentašić, Pavle ; Lončarić, Sven
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
/ - , 2014, 138-141
Skup
36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Mjesto i datum
Chicago (IL), Sjedinjene Američke Države, 26.08.2014. - 30.08.2014
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
diabetic retinopathy; exudate detection; machine learning; image processing and analysis
Sažetak
Diabetic retinopathy (DR) is a visual complication of diabetes, which has become one of the leading causes of preventable blindness in the world. Exudate detection is an important problem in automatic screening systems for detection of diabetic retinopathy using color fundus photographs. In this paper, we present a method for detection of exudates in color fundus photographs, which combines several preprocessing and candidate extraction algorithms to increase the exudate detection accuracy. The first stage of the method consists of an ensemble of several exudate candidate extraction algorithms. In the learning phase, simulated annealing is used to determine weights for combining the results of the ensemble candidate extraction algorithms. The second stage of the method uses a machine learning-based classification for detection of exudate regions. The experimental validation was performed using the DRiDB color fundus image set. The validation has demonstrated that the proposed method achieved higher accuracy in comparison to state-of-the art methods.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
036-0362214-1989 - Inteligentne metode obrade i analize slika (Lončarić, Sven, MZO ) ( CroRIS)
ACROSS
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Sven Lončarić
(autor)