Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 714541

Comparing classification models in the final exam performance prediction


Gamulin, Jasna; Gamulin, Ozren; Kermek, Dragutin
Comparing classification models in the final exam performance prediction // 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO-2014/CE), DOI: 10.1109/MIPRO.2014.6859650 / Čičin-Šain, Marina ; Sunde, Jadranka ; Henno, Jaak ; Jaakkola, Hannu ; Sluganović Ivanka (ur.).
Opatija, 2014. str. 663-668 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 714541 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Comparing classification models in the final exam performance prediction

Autori
Gamulin, Jasna ; Gamulin, Ozren ; Kermek, Dragutin

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO-2014/CE), DOI: 10.1109/MIPRO.2014.6859650 / Čičin-Šain, Marina ; Sunde, Jadranka ; Henno, Jaak ; Jaakkola, Hannu ; Sluganović Ivanka - Opatija, 2014, 663-668

ISBN
978-953-233-081-6

Skup
37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO-2014/CE)

Mjesto i datum
Opatija, Hrvatska, 26.05.2014. - 30.05.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Internet; educational courses; genetic algorithms; learning management systems; pattern classification

Sažetak
The use of Learning Management Systems (LMS) and the web-based formative and summative assessments during the traditional teaching in classroom provides the huge amount of data on students' behavior and results at the point of time when the course is still in progress. This data could be used for the final exam performance prediction so that the excellent as well as the students requiring help could be detected. The data on 302 students enrolled into the first year Physics course of a biomedical university study program in 2011/2012 have been used. The data were preprocessed by dividing Croatian grading system which comprises 5 grades (range 1-5 ; 1=fail, 5=excellent) into 2 categorical classes in one version of the experiment and into 3 categorical classes in the second version. Several up to date algorithms for classification were applied without and with attributes optimization by a genetic algorithm. Also, since students have 4 chances at 5 exam terms during an academic year, 3 different dependent variables were constructed. In order to evaluate the performance that each of the classification models had the following performance criteria were used: accuracy for all models and sensitivity and area under curve (AUC) for binary classifier systems.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet organizacije i informatike, Varaždin,
Medicinski fakultet, Zagreb

Profili:

Avatar Url Dragutin Kermek (autor)

Avatar Url Ozren Gamulin (autor)

Citiraj ovu publikaciju:

Gamulin, Jasna; Gamulin, Ozren; Kermek, Dragutin
Comparing classification models in the final exam performance prediction // 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO-2014/CE), DOI: 10.1109/MIPRO.2014.6859650 / Čičin-Šain, Marina ; Sunde, Jadranka ; Henno, Jaak ; Jaakkola, Hannu ; Sluganović Ivanka (ur.).
Opatija, 2014. str. 663-668 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Gamulin, J., Gamulin, O. & Kermek, D. (2014) Comparing classification models in the final exam performance prediction. U: Čičin-Šain, M., Sunde, J., Henno, J., Jaakkola, H. & Sluganović Ivanka (ur.)37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO-2014/CE), DOI: 10.1109/MIPRO.2014.6859650.
@article{article, author = {Gamulin, Jasna and Gamulin, Ozren and Kermek, Dragutin}, year = {2014}, pages = {663-668}, keywords = {Internet, educational courses, genetic algorithms, learning management systems, pattern classification}, isbn = {978-953-233-081-6}, title = {Comparing classification models in the final exam performance prediction}, keyword = {Internet, educational courses, genetic algorithms, learning management systems, pattern classification}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Gamulin, Jasna and Gamulin, Ozren and Kermek, Dragutin}, year = {2014}, pages = {663-668}, keywords = {Internet, educational courses, genetic algorithms, learning management systems, pattern classification}, isbn = {978-953-233-081-6}, title = {Comparing classification models in the final exam performance prediction}, keyword = {Internet, educational courses, genetic algorithms, learning management systems, pattern classification}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font