Pregled bibliografske jedinice broj: 713587
Multi-Physics Simulations in Continuum Mechanics
Multi-Physics Simulations in Continuum Mechanics // Proceedings of 5th International Conference of Croatian Society of Mechanics
Split, Hrvatska; Trogir, Hrvatska, 2006. (predavanje, nije recenziran, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 713587 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multi-Physics Simulations in Continuum Mechanics
Autori
Jasak, Hrvoje
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 5th International Conference of Croatian Society of Mechanics
/ - , 2006
Skup
5th International Congress of Croatian Society of Mechanics
Mjesto i datum
Split, Hrvatska; Trogir, Hrvatska, 21.09.2006. - 23.09.2006
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Multi-physics; object-oriented; FVM; automatic mesh motion; fluid-structure; free surface flow
Sažetak
The era of commodity computing brings a profound change in the use of numerical analysis of continuum mechanics problems in science and engineering. Teraflop-rate computing facility, until recently available only to chosen few is becoming commonplace in an industrial setting. Range and complexity of problems where numerical methods are applied is also expanding. Here, massive reduction in the cost of solution allows the empirical or simplified models to be replaced by fundamental sets of equations. Numerical simulation is also expanding beyond its traditional realm of structural analysis and fluid flow. In the first phase, this covers real material properties, chemically reacting flows, multi-phase and free surface flows, radiative heat transfer, electromagnetics etc. A natural extension of the above is coupled analysis of engineering components, covering a number of interacting phenomena. For example, a Fluid-Structure Interaction (FSI) simulation covers the physics of fluid flow and stress analysis, but the emphasis is on dynamic interaction between the two. Coupled nature of the problem brings its own challenges beyond the realm of “bread-and-butter” fluid flow or structural dynamics simulations. In this paper, expanded role of numerical solvers in Computational Continuum Mechanics (CCM) will be examined from the point of view of solver development. We shall present a new way of implementing partial differential equations of continuum mechanics in numerical simulation software through the use of object-oriented programming. Desirable consequences of object-orientation include data protection and encapsulation, layered development and code re-use and facilitate side-to-side implementation of various physical models and discretisation methods. This will be followed by an overview of complex geometry support and model to model coupling framework. The paper is concluded with examples of coupled multi-model simulations. Open- FOAM [6, 10], an Open Source object-oriented C++ library for numerical simulations in contin- uum mechanics is the basis of the review and source of examples.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo