Pregled bibliografske jedinice broj: 681732
FINITE p-GROUPS ALL OF WHOSE MAXIMAL SUBGROUPS, EXCEPT ONE, HAVE ITS DERIVED SUBGROUP OF ORDER <=P
FINITE p-GROUPS ALL OF WHOSE MAXIMAL SUBGROUPS, EXCEPT ONE, HAVE ITS DERIVED SUBGROUP OF ORDER
CROSBI ID: 681732 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
FINITE p-GROUPS ALL OF WHOSE MAXIMAL SUBGROUPS, EXCEPT ONE, HAVE ITS DERIVED SUBGROUP OF ORDER <=P
Autori
Janko, Zvonimir
Izvornik
Glasnik matematički (0017-095X) 47
(2012), 67;
325-332
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Finite p-groups; minimal nonabelian p-groups; commutator subgroups; nilpotence class of p-groups; Frattini subgroups; generators and relations.
Sažetak
Let G be a finite p-group which has exactly one maximal subgroup H such that the order of H' is >p. Then we have d(G)=2, p=2, H' is a four-group, G' is abelian of order 8 and type (4, 2), G is of class 3 and the structure of G is completely determined. This solves the problem Nr. 1800 stated by Y. Berkovich in /3/.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Napomena
Prof.dr. Zvonimi Janko je suradnik na ovom znanstvenom projektu iz hrvatske dijaspore.
POVEZANOST RADA
Projekti:
083-0000000-3227 - PRIMJENA ALGEBRE U GEOMETRIJI 2
Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus