Pregled bibliografske jedinice broj: 673468
Nanostructures and Eigenvectors of Matrices
Nanostructures and Eigenvectors of Matrices // Topological Modelling of Nanostructures and Extended Systems / Ashrafi, Ali Reza ; Cataldo, Franco ; Iranmanesh, Ali ; Ori , Ottorino (ur.).
Dordrecht: Springer, 2013. str. 287-302
CROSBI ID: 673468 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Nanostructures and Eigenvectors of Matrices
Autori
László, István ; Graovac, Ante ; Pisanski, Tomaž
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Topological Modelling of Nanostructures and Extended Systems
Urednik/ci
Ashrafi, Ali Reza ; Cataldo, Franco ; Iranmanesh, Ali ; Ori , Ottorino
Izdavač
Springer
Grad
Dordrecht
Godina
2013
Raspon stranica
287-302
ISBN
978-94-007-6413-2
Ključne riječi
Nanostuctures, eigenvectors, W matrices
Sažetak
Very often the basic information about a nanostructure is a topological one. Based on this topological information, we have to determine the Descartes coordinates of the atoms. For fullerenes, nanotubes, and nanotori, the topological coordinate method supplies the necessary information. With the help of the bi-lobal eigenvectors of the Laplacian matrix, the position of the atoms can be generated easily. This method fails, however, for nanotube junctions and coils and other nanostructures. We have found recently a matrix W which could generate the Descartes coordinates not only of fullerenes, nanotubes, and nanotori but also of nanotube junctions and coils. Solving namely the eigenvalue problem of this matrix W, its eigenvectors with zero eigenvalue give the Descartes coordinates. There are nanostructures, however, whose W matrices have more eigenvectors with zero eigenvalues than it is needed for determining the positions of the atoms in 3D space. In such cases the geometry of nanostructure can be obtained with the help of a projection from a higher-dimensional space in a similar way as the quasicrystals are obtained. In this chapter, we study the structure and geometrical properties of some selected graphs which bring us to higher-dimensional spaces. A simple harmonic potential is suggested for constructing the matrix W.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Fizika, Kemija
POVEZANOST RADA
Projekti:
177-0982929-2940 - Modeliranje molekula i materijala metodama matematičke i računarske kemije
Ustanove:
Prirodoslovno-matematički fakultet, Split
Profili:
Ante Graovac
(autor)