Pregled bibliografske jedinice broj: 670720
Tactical decomposition of designs over finite fields
Tactical decomposition of designs over finite fields // Conference on Random network codes and Designs over GF(q), Ghent, September 18-20, 2013
Gent, Belgija, 2013. str. 1-1 (predavanje, međunarodna recenzija, kratko priopćenje, znanstveni)
CROSBI ID: 670720 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Tactical decomposition of designs over finite
fields
Autori
Nakić, Anamari ; Pavčević, Mario
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, kratko priopćenje, znanstveni
Izvornik
Conference on Random network codes and Designs over GF(q), Ghent, September 18-20, 2013
/ - , 2013, 1-1
Skup
Conference on Random network codes and Designs over GF(q)
Mjesto i datum
Gent, Belgija, 18.09.2013. - 20.09.2013
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Designs over finite fields ; Tactical decomposition
Sažetak
In this talk, we present results obtained for tactical decompositions of $2$-$(v, k, \lambda_2 ; q)$ designs. We show that coefficients of tactical decomposition matrices comply an equation system analogous to the one for $2$- designs. The emphasis of the talk is on the additional system of inequations for coefficients of tactical decomposition matrices of designs over $\Fq$. This system is obtained by taking into consideration specific properties of designs over $\Fq$ while using the known proving techniques for $t$-designs. This system of equations and inequations for coefficients of tactical decomposition matrices represents necessary conditions for the existence of designs over $\Fq$ with an assumed automorphism group. The necessary conditions are implemented in the well-known Kramer-Mesner method for construction of designs over finite fields. Using these additional constraints the adjoined Kramer-Mesner system can be replaced with several smaller systems of linear equations, leading to a reduction of the overall computation time needed for construction of designs over finite fields.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZO-ZP-036-0372785-2964 - Kombinatorički dizajni i konačne geometrije (Pavčević, Mario-Osvin, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb